android 6.0sd卡内部存储 & 外部存储

来源:互联网 发布:unity3d 性能测试工具 编辑:程序博客网 时间:2024/06/06 03:41

android6.0 把sd卡可以设置成内部存储。

一、fatab文件匹配

我们先来看下,vold的main函数:

main函数在创建了VolumeManager后,调用了如下函数:

    if (process_config(vm)) {        PLOG(ERROR) << "Error reading configuration... continuing anyways";    }

我们再来看看这个函数:

static int process_config(VolumeManager *vm) {    std::string path(android::vold::DefaultFstabPath());    fstab = fs_mgr_read_fstab(path.c_str());//获取fstab文件    if (!fstab) {        PLOG(ERROR) << "Failed to open default fstab " << path;        return -1;    }    /* Loop through entries looking for ones that vold manages */    bool has_adoptable = false;    for (int i = 0; i < fstab->num_entries; i++) {        if (fs_mgr_is_voldmanaged(&fstab->recs[i])) {//fastab文件满足vold的项            if (fs_mgr_is_nonremovable(&fstab->recs[i])) {                LOG(WARNING) << "nonremovable no longer supported; ignoring volume";                continue;            }            std::string sysPattern(fstab->recs[i].blk_device);            std::string nickname(fstab->recs[i].label);            int flags = 0;            if (fs_mgr_is_encryptable(&fstab->recs[i])) {                flags |= android::vold::Disk::Flags::kAdoptable;                has_adoptable = true;            }            if (fs_mgr_is_noemulatedsd(&fstab->recs[i])                    || property_get_bool("vold.debug.default_primary", false)) {                flags |= android::vold::Disk::Flags::kDefaultPrimary;            }            vm->addDiskSource(std::shared_ptr<VolumeManager::DiskSource>(                    new VolumeManager::DiskSource(sysPattern, nickname, flags)));        }    }    property_set("vold.has_adoptable", has_adoptable ? "1" : "0");    return 0;}

这个函数先获取fstab文件,分析fstab文件,创建了DiskSource对象。然后调用了VolumeManager的addDiskSource函数:

void VolumeManager::addDiskSource(const std::shared_ptr<DiskSource>& diskSource) {    mDiskSources.push_back(diskSource);}
保存在mDiskSources中。

下面我们来看下fstab文件,下面文件有机箱是voldmanaged的,就是上面函数满足的条件

/dev/block/platform/comip-mmc.1/by-name/system                    /system          ext4    ro,barrier=1                                                    wait/dev/block/platform/comip-mmc.1/by-name/cache                     /cache           ext4    noatime,nosuid,nodev,barrier=1,data=ordered                     wait,check/dev/block/platform/comip-mmc.1/by-name/userdata                  /data            ext4    noatime,nosuid,nodev,barrier=1,data=ordered,noauto_da_alloc     resize,wait,check,encryptable=footer#/dev/block/platform/comip-mmc.1/by-name/amt                      /amt             ext4    rw                                                              wait/devices/platform/comip-mmc.0/mmc_host/mmc1/*                       auto             vfat    defaults                                                        voldmanaged=sdcard1:auto,encryptable=false/devices/a0400000.usb_hcd/usb1/*                                    auto      vfat    defaults        voldmanaged=usbotg:auto,noemulatedsd/dev/block/mmcblk1p1                                              /sdcard                vfat  defaults  recoveryonly/dev/block/platform/comip-mmc.1/by-name/kernel                                /kernel          emmc        defaults    defaults/dev/block/platform/comip-mmc.1/by-name/ramdisk                   /boot                  emmc    defaults    defaults/dev/block/platform/comip-mmc.1/by-name/ramdisk_recovery          /recovery        emmc    defaults    defaults/dev/block/platform/comip-mmc.1/by-name/ramdisk_amt1              /ramdisk_amt1    emmc    defaults    defaults/dev/block/platform/comip-mmc.1/by-name/ramdisk_amt3              /ramdisk_amt3    emmc    defaults    defaults/dev/block/platform/comip-mmc.1/by-name/kernel_recovery           /kernel_recovery emmc    defaults    defaults/dev/block/platform/comip-mmc.1/by-name/logo                      /logo            emmc    defaults    defaults/dev/block/platform/comip-mmc.1/by-name/misc                      /misc            emmc    defaults    defaults/dev/block/platform/comip-mmc.1/by-name/fota                      /fota            emmc    defaults    defaults/dev/block/platform/comip-mmc.1/by-name/modemarm                  /modemarm        emmc    defaults    defaults/dev/block/platform/comip-mmc.1/by-name/modemdsp                  /modemdsp        emmc    defaults    defaults/dev/block/mmcblk0boot0                                           /uboot           emmc    defaults    defaults/dev/block/platform/comip-mmc.1/by-name/lcboot                          /lcboot          emmc    defaults    defaults/dev/block/zram0                                                  none          swap    defaults        zramsize=268435456


二、检测到设备

然后就是有检测到设备,到下面函数:

void NetlinkHandler::onEvent(NetlinkEvent *evt) {    VolumeManager *vm = VolumeManager::Instance();    const char *subsys = evt->getSubsystem();    if (!subsys) {        SLOGW("No subsystem found in netlink event");        return;    }    if (!strcmp(subsys, "block")) {        vm->handleBlockEvent(evt);    }}

调用了VolumeManager的handleBlockEvent函数:

void VolumeManager::handleBlockEvent(NetlinkEvent *evt) {    std::lock_guard<std::mutex> lock(mLock);    if (mDebug) {        LOG(VERBOSE) << "----------------";        LOG(VERBOSE) << "handleBlockEvent with action " << (int) evt->getAction();        evt->dump();    }    std::string eventPath(evt->findParam("DEVPATH"));    std::string devType(evt->findParam("DEVTYPE"));    if (devType != "disk") return;    int major = atoi(evt->findParam("MAJOR"));    int minor = atoi(evt->findParam("MINOR"));    dev_t device = makedev(major, minor);//创建设备    switch (evt->getAction()) {    case NetlinkEvent::Action::kAdd: {        for (auto source : mDiskSources) {            if (source->matches(eventPath)) {//之前的mDiskSources就是用来匹配的                // For now, assume that MMC devices are SD, and that                // everything else is USB                int flags = source->getFlags();//从source获取flags                if (major == kMajorBlockMmc) {                    flags |= android::vold::Disk::Flags::kSd;                } else {                    flags |= android::vold::Disk::Flags::kUsb;                }                auto disk = new android::vold::Disk(eventPath, device,                        source->getNickname(), flags);//新建Disk                disk->create();                mDisks.push_back(std::shared_ptr<android::vold::Disk>(disk));                break;            }        }        break;    }

有设备是主要是Aciton:kAdd,这个函数先创建了设备,根据major和minor。
从mDiskSources看是否有满足的DiskSource,然后获取其flags,然后新建Disk,调用create函数。

三、Disk创建

Disk::Disk(const std::string& eventPath, dev_t device,        const std::string& nickname, int flags) :        mDevice(device), mSize(-1), mNickname(nickname), mFlags(flags), mCreated(                false), mJustPartitioned(false) {    mId = StringPrintf("disk:%u,%u", major(device), minor(device));    mEventPath = eventPath;    mSysPath = StringPrintf("/sys/%s", eventPath.c_str());    mDevPath = StringPrintf("/dev/block/vold/%s", mId.c_str());//设备地址    CreateDeviceNode(mDevPath, mDevice);}

我们再来看看CreateDeviceNode函数:

status_t CreateDeviceNode(const std::string& path, dev_t dev) {    const char* cpath = path.c_str();    status_t res = 0;    char* secontext = nullptr;    if (sehandle) {        if (!selabel_lookup(sehandle, &secontext, cpath, S_IFBLK)) {            setfscreatecon(secontext);        }    }    mode_t mode = 0660 | S_IFBLK;    if (mknod(cpath, mode, dev) < 0) {        if (errno != EEXIST) {            PLOG(ERROR) << "Failed to create device node for " << major(dev)                    << ":" << minor(dev) << " at " << path;            res = -errno;        }    }    if (secontext) {        setfscreatecon(nullptr);        freecon(secontext);    }    return res;}

这个函数里面,其中最重要的就是mknod,把device的设备放在了dev,这个设备目录。等于创建了设备目录,等于我们就有了dev/block/vold/disk:179,128这个目录。
我们再来看,create函数

status_t Disk::create() {    CHECK(!mCreated);    mCreated = true;    notifyEvent(ResponseCode::DiskCreated, StringPrintf("%d", mFlags));    readMetadata();    readPartitions();    return OK;}

readMetadata主要就是获取信息,然后和MountService通信,和MountService通信我们这里不说了,之前的博客都分析过很多。

status_t Disk::readMetadata() {    mSize = -1;    mLabel.clear();    int fd = open(mDevPath.c_str(), O_RDONLY | O_CLOEXEC);    if (fd != -1) {        if (ioctl(fd, BLKGETSIZE64, &mSize)) {            mSize = -1;        }        close(fd);    }    switch (major(mDevice)) {    case kMajorBlockScsiA: case kMajorBlockScsiB: case kMajorBlockScsiC: case kMajorBlockScsiD:    case kMajorBlockScsiE: case kMajorBlockScsiF: case kMajorBlockScsiG: case kMajorBlockScsiH:    case kMajorBlockScsiI: case kMajorBlockScsiJ: case kMajorBlockScsiK: case kMajorBlockScsiL:    case kMajorBlockScsiM: case kMajorBlockScsiN: case kMajorBlockScsiO: case kMajorBlockScsiP: {        std::string path(mSysPath + "/device/vendor");        std::string tmp;        if (!ReadFileToString(path, &tmp)) {            PLOG(WARNING) << "Failed to read vendor from " << path;            return -errno;        }        mLabel = tmp;        break;    }    case kMajorBlockMmc: {        std::string path(mSysPath + "/device/manfid");        std::string tmp;        if (!ReadFileToString(path, &tmp)) {            PLOG(WARNING) << "Failed to read manufacturer from " << path;            return -errno;        }        uint64_t manfid = strtoll(tmp.c_str(), nullptr, 16);        // Our goal here is to give the user a meaningful label, ideally        // matching whatever is silk-screened on the card.  To reduce        // user confusion, this list doesn't contain white-label manfid.        switch (manfid) {        case 0x000003: mLabel = "SanDisk"; break;        case 0x00001b: mLabel = "Samsung"; break;        case 0x000028: mLabel = "Lexar"; break;        case 0x000074: mLabel = "Transcend"; break;        }        break;    }    default: {        LOG(WARNING) << "Unsupported block major type" << major(mDevice);        return -ENOTSUP;    }    }    notifyEvent(ResponseCode::DiskSizeChanged, StringPrintf("%" PRId64, mSize));    notifyEvent(ResponseCode::DiskLabelChanged, mLabel);    notifyEvent(ResponseCode::DiskSysPathChanged, mSysPath);    return OK;}

我们主要看readPartitions这个函数:

status_t Disk::readPartitions() {    int8_t maxMinors = getMaxMinors();    if (maxMinors < 0) {        return -ENOTSUP;    }    destroyAllVolumes();    // Parse partition table    std::vector<std::string> cmd;    cmd.push_back(kSgdiskPath);//"/system/bin/sgdisk";    cmd.push_back("--android-dump");    cmd.push_back(mDevPath);    std::vector<std::string> output;    status_t res = ForkExecvp(cmd, output);    if (res != OK) {        LOG(WARNING) << "sgdisk failed to scan " << mDevPath;        notifyEvent(ResponseCode::DiskScanned);        mJustPartitioned = false;        return res;    }    Table table = Table::kUnknown;    bool foundParts = false;    for (auto line : output) {        char* cline = (char*) line.c_str();        char* token = strtok(cline, kSgdiskToken);        if (token == nullptr) continue;        if (!strcmp(token, "DISK")) {            const char* type = strtok(nullptr, kSgdiskToken);            if (!strcmp(type, "mbr")) {//mbr                table = Table::kMbr;            } else if (!strcmp(type, "gpt")) {                table = Table::kGpt;//gpt            }        } else if (!strcmp(token, "PART")) {            foundParts = true;            int i = strtol(strtok(nullptr, kSgdiskToken), nullptr, 10);            if (i <= 0 || i > maxMinors) {                LOG(WARNING) << mId << " is ignoring partition " << i                        << " beyond max supported devices";                continue;            }            dev_t partDevice = makedev(major(mDevice), minor(mDevice) + i);//和之前Disk一样根据disk的device的major和minor创建volume的device            if (table == Table::kMbr) {                const char* type = strtok(nullptr, kSgdiskToken);                switch (strtol(type, nullptr, 16)) {                case 0x06: // FAT16                case 0x0b: // W95 FAT32 (LBA)                case 0x0c: // W95 FAT32 (LBA)                case 0x0e: // W95 FAT16 (LBA)                    createPublicVolume(partDevice);                    break;                }            } else if (table == Table::kGpt) {//下面的就是gpt                const char* typeGuid = strtok(nullptr, kSgdiskToken);                const char* partGuid = strtok(nullptr, kSgdiskToken);                if (!strcasecmp(typeGuid, kGptBasicData)) {                    createPublicVolume(partDevice);                } else if (!strcasecmp(typeGuid, kGptAndroidExpand)) {//expand就是privatevolume                    createPrivateVolume(partDevice, partGuid);                }            }        }    }    // Ugly last ditch effort, treat entire disk as partition    if (table == Table::kUnknown || !foundParts) {        LOG(WARNING) << mId << " has unknown partition table; trying entire device";        std::string fsType;        std::string unused;        if (ReadMetadataUntrusted(mDevPath, fsType, unused, unused) == OK) {            createPublicVolume(mDevice);        } else {            LOG(WARNING) << mId << " failed to identify, giving up";        }    }    notifyEvent(ResponseCode::DiskScanned);    mJustPartitioned = false;    return OK;}

上面函数,就是根据sgdisk这个工具,输入命令,去读取输出,相应创建privatevolume还是PublicVolume
下面我们结合sgdisk的命令输出来看:

DISK gpt D25EA824-98CC-4390-899F-40F8B7609491PART 1 193D1EA4-B3CA-11E4-B075-10604B889DCF 7F3EE593-E357-196F-7707-FA295A508E64 android_expand

这里是内部存储sgdisk的输出。这里disk是gpt。


四、内部存储创建


我们再来看看createPrivatevolume,

void Disk::createPrivateVolume(dev_t device, const std::string& partGuid) {    std::string normalizedGuid;    if (NormalizeHex(partGuid, normalizedGuid)) {        LOG(WARNING) << "Invalid GUID " << partGuid;        return;    }    std::string keyRaw;    if (!ReadFileToString(BuildKeyPath(normalizedGuid), &keyRaw)) {        PLOG(ERROR) << "Failed to load key for GUID " << normalizedGuid;        return;    }    LOG(DEBUG) << "Found key for GUID " << normalizedGuid;    auto vol = std::shared_ptr<VolumeBase>(new PrivateVolume(device, keyRaw));    if (mJustPartitioned) {        LOG(DEBUG) << "Device just partitioned; silently formatting";        vol->setSilent(true);        vol->create();        vol->format("auto");        vol->destroy();        vol->setSilent(false);    }    mVolumes.push_back(vol);    vol->setDiskId(getId());    vol->setPartGuid(partGuid);    vol->create();}

再来看Privatevolume的构造函数

PrivateVolume::PrivateVolume(dev_t device, const std::string& keyRaw) :        VolumeBase(Type::kPrivate), mRawDevice(device), mKeyRaw(keyRaw) {    setId(StringPrintf("private:%u,%u", major(device), minor(device)));    mRawDevPath = StringPrintf("/dev/block/vold/%s", getId().c_str());}

doFormat函数就是将sd卡格式化,比如格式化成ext4的。

status_t PrivateVolume::doFormat(const std::string& fsType) {    std::string resolvedFsType = fsType;    if (fsType == "auto") {        // For now, assume that all MMC devices are flash-based SD cards, and        // give everyone else ext4 because sysfs rotational isn't reliable.        if ((major(mRawDevice) == kMajorBlockMmc) && f2fs::IsSupported()) {            resolvedFsType = "f2fs";        } else {            resolvedFsType = "ext4";        }        LOG(DEBUG) << "Resolved auto to " << resolvedFsType;    }    if (resolvedFsType == "ext4") {        // TODO: change reported mountpoint once we have better selinux support        if (ext4::Format(mDmDevPath, 0, "/data")) {            PLOG(ERROR) << getId() << " failed to format";            return -EIO;        }    } else if (resolvedFsType == "f2fs") {        if (f2fs::Format(mDmDevPath)) {            PLOG(ERROR) << getId() << " failed to format";            return -EIO;        }    } else {        LOG(ERROR) << getId() << " unsupported filesystem " << fsType;        return -EINVAL;    }    return OK;}

doCreate函数,就会调用CreateDeviceNode,来创建dev设备,就是将device绑在dev目录下。后面一些函数没有深入研究

status_t PrivateVolume::doCreate() {    if (CreateDeviceNode(mRawDevPath, mRawDevice)) {        return -EIO;    }    // Recover from stale vold by tearing down any old mappings    cryptfs_revert_ext_volume(getId().c_str());    // TODO: figure out better SELinux labels for private volumes    unsigned char* key = (unsigned char*) mKeyRaw.data();    char crypto_blkdev[MAXPATHLEN];    int res = cryptfs_setup_ext_volume(getId().c_str(), mRawDevPath.c_str(),            key, mKeyRaw.size(), crypto_blkdev);    mDmDevPath = crypto_blkdev;    if (res != 0) {        PLOG(ERROR) << getId() << " failed to setup cryptfs";        return -EIO;    }    return OK;}

之后就是mount了,内部存储是将dev文件mount到mnt/expand下。

status_t PrivateVolume::doMount() {    if (readMetadata()) {        LOG(ERROR) << getId() << " failed to read metadata";        return -EIO;    }    mPath = StringPrintf("/mnt/expand/%s", mFsUuid.c_str());    setPath(mPath);    if (PrepareDir(mPath, 0700, AID_ROOT, AID_ROOT)) {        PLOG(ERROR) << getId() << " failed to create mount point " << mPath;        return -EIO;    }    if (mFsType == "ext4") {        int res = ext4::Check(mDmDevPath, mPath);        if (res == 0 || res == 1) {            LOG(DEBUG) << getId() << " passed filesystem check";        } else {            PLOG(ERROR) << getId() << " failed filesystem check";            return -EIO;        }        if (ext4::Mount(mDmDevPath, mPath, false, false, true)) {            PLOG(ERROR) << getId() << " failed to mount";            return -EIO;        }    } 


五、创建外部存储

外部存储sgdisk的输出命令如下:

05-30 20:23:45.358   175   177 V vold    : DISK mbr05-30 20:23:45.359   175   177 V vold    : PART 1 c

我们再来看Disk的readPartitions函数的其中一段

   Table table = Table::kUnknown;    bool foundParts = false;    for (auto line : output) {        char* cline = (char*) line.c_str();        char* token = strtok(cline, kSgdiskToken);        if (token == nullptr) continue;        if (!strcmp(token, "DISK")) {            const char* type = strtok(nullptr, kSgdiskToken);            if (!strcmp(type, "mbr")) {//mbr                table = Table::kMbr;            } else if (!strcmp(type, "gpt")) {                table = Table::kGpt;            }        } else if (!strcmp(token, "PART")) {            foundParts = true;            int i = strtol(strtok(nullptr, kSgdiskToken), nullptr, 10);            if (i <= 0 || i > maxMinors) {                LOG(WARNING) << mId << " is ignoring partition " << i                        << " beyond max supported devices";                continue;            }            dev_t partDevice = makedev(major(mDevice), minor(mDevice) + i);            if (table == Table::kMbr) {                const char* type = strtok(nullptr, kSgdiskToken);                switch (strtol(type, nullptr, 16)) {                case 0x06: // FAT16                case 0x0b: // W95 FAT32 (LBA)                case 0x0c: // W95 FAT32 (LBA)                case 0x0e: // W95 FAT16 (LBA)                    createPublicVolume(partDevice);// 是mbr的就直接调用createPublicVolume函数                    break;                }            } else if (table == Table::kGpt) {                const char* typeGuid = strtok(nullptr, kSgdiskToken);                const char* partGuid = strtok(nullptr, kSgdiskToken);                if (!strcasecmp(typeGuid, kGptBasicData)) {                    createPublicVolume(partDevice);                } else if (!strcasecmp(typeGuid, kGptAndroidExpand)) {                    createPrivateVolume(partDevice, partGuid);                }            }        }    }

然后我们看createPublicVolume函数:

void Disk::createPublicVolume(dev_t device) {    auto vol = std::shared_ptr<VolumeBase>(new PublicVolume(device));    if (mJustPartitioned) {        LOG(DEBUG) << "Device just partitioned; silently formatting";        vol->setSilent(true);        vol->create();        vol->format("auto");        vol->destroy();        vol->setSilent(false);    }    mVolumes.push_back(vol);    vol->setDiskId(getId());    vol->create();}

构造函数

PublicVolume::PublicVolume(dev_t device) :        VolumeBase(Type::kPublic), mDevice(device), mFusePid(0) {    setId(StringPrintf("public:%u,%u", major(device), minor(device)));    mDevPath = StringPrintf("/dev/block/vold/%s", getId().c_str());}

创建设备

status_t PublicVolume::doCreate() {    return CreateDeviceNode(mDevPath, mDevice);}
格式化

status_t PublicVolume::doFormat(const std::string& fsType) {    if (fsType == "vfat" || fsType == "auto") {        if (WipeBlockDevice(mDevPath) != OK) {            LOG(WARNING) << getId() << " failed to wipe";        }        if (vfat::Format(mDevPath, 0)) {            LOG(ERROR) << getId() << " failed to format";            return -errno;        }    } else {        LOG(ERROR) << "Unsupported filesystem " << fsType;        return -EINVAL;    }    return OK;}

我们再来看下mount的第一步流程:

status_t PublicVolume::doMount() {    // TODO: expand to support mounting other filesystems    readMetadata();    if (mFsType != "vfat") {        LOG(ERROR) << getId() << " unsupported filesystem " << mFsType;        return -EIO;    }    if (vfat::Check(mDevPath)) {        LOG(ERROR) << getId() << " failed filesystem check";        return -EIO;    }

doMount函数中显示调用了readMetadata函数:

status_t PublicVolume::readMetadata() {    status_t res = ReadMetadataUntrusted(mDevPath, mFsType, mFsUuid, mFsLabel);    notifyEvent(ResponseCode::VolumeFsTypeChanged, mFsType);    notifyEvent(ResponseCode::VolumeFsUuidChanged, mFsUuid);    notifyEvent(ResponseCode::VolumeFsLabelChanged, mFsLabel);    return res;}

我们可以知道通过ReadMetadataUntrusted函数来获取mFsType, mFsUuid, mFsLabel3个值。

我们再来看下ReadMetadataUntrusted函数:

status_t ReadMetadataUntrusted(const std::string& path, std::string& fsType,        std::string& fsUuid, std::string& fsLabel) {    return readMetadata(path, fsType, fsUuid, fsLabel, true);}

readMetadata函数,我们通过blkid进程来获取这些值。

static status_t readMetadata(const std::string& path, std::string& fsType,        std::string& fsUuid, std::string& fsLabel, bool untrusted) {    fsType.clear();    fsUuid.clear();    fsLabel.clear();    std::vector<std::string> cmd;    cmd.push_back(kBlkidPath);//"/system/bin/blkid"    cmd.push_back("-c");    cmd.push_back("/dev/null");    cmd.push_back("-s");    cmd.push_back("TYPE");    cmd.push_back("-s");    cmd.push_back("UUID");    cmd.push_back("-s");    cmd.push_back("LABEL");    cmd.push_back(path);    std::vector<std::string> output;    status_t res = ForkExecvp(cmd, output, untrusted ? sBlkidUntrustedContext : sBlkidContext);    if (res != OK) {        LOG(WARNING) << "blkid failed to identify " << path;        return res;    }    char value[128];    for (auto line : output) {        // Extract values from blkid output, if defined        const char* cline = line.c_str();        char* start = strstr(cline, "TYPE=");        if (start != nullptr && sscanf(start + 5, "\"%127[^\"]\"", value) == 1) {            fsType = value;        }        start = strstr(cline, "UUID=");        if (start != nullptr && sscanf(start + 5, "\"%127[^\"]\"", value) == 1) {            fsUuid = value;        }        start = strstr(cline, "LABEL=");        if (start != nullptr && sscanf(start + 6, "\"%127[^\"]\"", value) == 1) {            fsLabel = value;        }    }    return OK;}

在这里我们再看下ForkExecvp函数:

status_t ForkExecvp(const std::vector<std::string>& args,        std::vector<std::string>& output, security_context_t context) {    std::string cmd;    for (size_t i = 0; i < args.size(); i++) {        cmd += args[i] + " ";        if (i == 0) {            LOG(VERBOSE) << args[i];//输入的命令打印        } else {            LOG(VERBOSE) << "    " << args[i];        }    }    output.clear();    if (setexeccon(context)) {        LOG(ERROR) << "Failed to setexeccon";        abort();    }    FILE* fp =  popen(cmd.c_str(), "r");//通过popen函数    if (setexeccon(nullptr)) {        LOG(ERROR) << "Failed to setexeccon";        abort();    }    if (!fp) {        PLOG(ERROR) << "Failed to popen " << cmd;        return -errno;    }    char line[1024];    while (fgets(line, sizeof(line), fp) != nullptr) {//获取输出        LOG(VERBOSE) << line;        output.push_back(std::string(line));    }    if (pclose(fp) != 0) {        PLOG(ERROR) << "Failed to pclose " << cmd;        return -errno;    }    return OK;}

上面通过popen来执行blkid进程获取信息,popen函数先fork,然后调用exec执行cmd,并且返回一个标准I/O的文件指针。

当type是r,文件指针连接到cmd的标准输出。如果是w,文件指针连接到cmd的标准输入。

最后pclose是关闭标准I/O流。



六、如何决定外部存储还是内部存储


流程我们看完了,但是disk在调用readPartitions函数时,根据sgdisk工具的输出,来决定是创建外部存储还是内部存储。但是这个sgdisk的输出又是谁来决定的,我们可以看下下面两个函数:

第一个就是格式化为内部存储:

status_t Disk::partitionPrivate() {    return partitionMixed(0);}

partitionMixed函数同样调用了sgdisk工具

status_t Disk::partitionMixed(int8_t ratio) {    int res;    destroyAllVolumes();    mJustPartitioned = true;    // First nuke any existing partition table    std::vector<std::string> cmd;    cmd.push_back(kSgdiskPath);    cmd.push_back("--zap-all");    cmd.push_back(mDevPath);    // Zap sometimes returns an error when it actually succeeded, so    // just log as warning and keep rolling forward.    if ((res = ForkExecvp(cmd)) != 0) {        LOG(WARNING) << "Failed to zap; status " << res;    }    // We've had some success above, so generate both the private partition    // GUID and encryption key and persist them.    std::string partGuidRaw;    std::string keyRaw;    if (ReadRandomBytes(16, partGuidRaw) || ReadRandomBytes(16, keyRaw)) {        LOG(ERROR) << "Failed to generate GUID or key";        return -EIO;    }    std::string partGuid;    StrToHex(partGuidRaw, partGuid);    if (!WriteStringToFile(keyRaw, BuildKeyPath(partGuid))) {        LOG(ERROR) << "Failed to persist key";        return -EIO;    } else {        LOG(DEBUG) << "Persisted key for GUID " << partGuid;    }    // Now let's build the new GPT table. We heavily rely on sgdisk to    // force optimal alignment on the created partitions.    cmd.clear();    cmd.push_back(kSgdiskPath);    // If requested, create a public partition first. Mixed-mode partitioning    // like this is an experimental feature.    if (ratio > 0) {        if (ratio < 10 || ratio > 90) {            LOG(ERROR) << "Mixed partition ratio must be between 10-90%";            return -EINVAL;        }        uint64_t splitMb = ((mSize / 100) * ratio) / 1024 / 1024;        cmd.push_back(StringPrintf("--new=0:0:+%" PRId64 "M", splitMb));        cmd.push_back(StringPrintf("--typecode=0:%s", kGptBasicData));        cmd.push_back("--change-name=0:shared");    }    // Define a metadata partition which is designed for future use; there    // should only be one of these per physical device, even if there are    // multiple private volumes.    /*cmd.push_back("--new=0:0:+16M");// 这段代码被我注释了,因为在我们的手机上有错,不知为何    cmd.push_back(StringPrintf("--typecode=0:%s", kGptAndroidMeta));    cmd.push_back("--change-name=0:android_meta");*/    // Define a single private partition filling the rest of disk.    cmd.push_back("--new=0:0:-0");    cmd.push_back(StringPrintf("--typecode=0:%s", kGptAndroidExpand));    cmd.push_back(StringPrintf("--partition-guid=0:%s", partGuid.c_str()));    cmd.push_back("--change-name=0:android_expand");// 这里就是对应我们的PART1 的expand    cmd.push_back(mDevPath);    if ((res = ForkExecvp(cmd)) != 0) {        LOG(ERROR) << "Failed to partition; status " << res;        return res;    }    return OK;}

原来的意思是先创建一个16M的part1为android_meta, 剩余的存储创建了part2,为android_expand。但是这样后面,在创建part2的时候createPrivatevolume,最后在Privatevolume的docreate函数出错了,没有找到设备。所以将part1,这段代码注释后是可以的。


第二个函数partitionPublic函数如下,变成外部存储。类似上面

status_t Disk::partitionPublic() {    int res;    // TODO: improve this code    destroyAllVolumes();    mJustPartitioned = true;    // First nuke any existing partition table    std::vector<std::string> cmd;    cmd.push_back(kSgdiskPath);    cmd.push_back("--zap-all");    cmd.push_back(mDevPath);    // Zap sometimes returns an error when it actually succeeded, so    // just log as warning and keep rolling forward.    if ((res = ForkExecvp(cmd)) != 0) {        LOG(WARNING) << "Failed to zap; status " << res;    }    struct disk_info dinfo;    memset(&dinfo, 0, sizeof(dinfo));    if (!(dinfo.part_lst = (struct part_info *) malloc(            MAX_NUM_PARTS * sizeof(struct part_info)))) {        return -1;    }    memset(dinfo.part_lst, 0, MAX_NUM_PARTS * sizeof(struct part_info));    dinfo.device = strdup(mDevPath.c_str());    dinfo.scheme = PART_SCHEME_MBR;    dinfo.sect_size = 512;    dinfo.skip_lba = 2048;    dinfo.num_lba = 0;    dinfo.num_parts = 1;    struct part_info *pinfo = &dinfo.part_lst[0];    pinfo->name = strdup("android_sdcard");    pinfo->flags |= PART_ACTIVE_FLAG;    pinfo->type = PC_PART_TYPE_FAT32;    pinfo->len_kb = -1;    int rc = apply_disk_config(&dinfo, 0);    if (rc) {        LOG(ERROR) << "Failed to apply disk configuration: " << rc;        goto out;    }out:    free(pinfo->name);    free(dinfo.device);    free(dinfo.part_lst);    return rc;}

而在调用这两个函数之后,应该是将某些数据烧录到了sd卡中。

因为下次开机,vold在Disk的readPartitions函数根据sgdisk工具输出,就自动识别出是publicvolume还是Privatevolume。




1 0
原创粉丝点击