ConcurrentHashMap源码

来源:互联网 发布:excel 重复数据计数 编辑:程序博客网 时间:2024/06/05 13:44
java.util.concurrent.ConcurrentHashMapConcurrentHashMap<K,V> extends AbstractMap<K,V>    implements ConcurrentMap<K,V>, Serializable {
  • 设计首要目的:维护并发可读性(get、迭代相关);次要目的:使空间消耗比HashMap相同或更好,且支持多线程高效率的初始插入(empty table)。
  • HashTable线程安全,但采用synchronized,多线程下效率低下。线程1put时,线程2无法put或get。

  • CAS算法;unsafe.compareAndSwapInt(this, valueOffset, expect, update); CAS(Compare And Swap),意思是如果valueOffset位置包含的值与expect值相同,则更新valueOffset位置的值为update,并返回true,否则不更新,返回false。

  • 与Java8的HashMap有相通之处,底层依然由“数组”+链表+红黑树;
  • 底层结构存放的是TreeBin对象,而不是TreeNode对象;
  • CAS作为知名无锁算法,那ConcurrentHashMap就没用锁了么?当然不是,hash值相同的链表的头结点还是会synchronized上锁。
    image

1.类变量&常量

private static final int MAXIMUM_CAPACITY = 1 << 30;        //最大容量private static final int DEFAULT_CAPACITY = 16;             //默认容量//最大数组长度,被toArray等方法调用static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;//默认的并发级别,保证构造map时初始容量不小于concurrencyLevel。仅为了兼容旧版本,jdk8中未使用private static final int DEFAULT_CONCURRENCY_LEVEL = 16;private static final float LOAD_FACTOR = 0.75f; //默认装载因子//链表转红黑树最大长度,且table容量大于64才会发生装换操作static final int TREEIFY_THRESHOLD = 8;         static final int UNTREEIFY_THRESHOLD = 6;   //红黑树退化成链表//大于等于DEFAULT_CAPACITY,每一步转换所需要重新回收的最少步数private static final int MIN_TRANSFER_STRIDE = 16;  private static int RESIZE_STAMP_BITS = 16; //用于size控制的bit数//用于size控制的最大bit数private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;//用于记录size控制的位移数private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;//hash运算的相关标志位static final int MOVED     = -1; // hash for forwarding nodesstatic final int TREEBIN   = -2; // hash for roots of treesstatic final int RESERVED  = -3; // hash for transient reservationsstatic final int HASH_BITS = 0x7fffffff; // usable bits of normal node hashstatic final int NCPU = Runtime.getRuntime().availableProcessors(); //可用处理器个数//存储节点的表,大小总是2的幂,且第一次插入元素时才会初始化transient volatile Node<K,V>[] table;   //下一张可用表,只在扩容操作时使用private transient volatile Node<K,V>[] nextTable;//实际上保存的是hashmap中的元素个数,利用CAS锁进行更新,但它并不用返回当前hashmap的元素个数 private transient volatile long baseCount;/* 控制标识符,负数代表正在进行初始化或扩容操作 -1代表正在初始化 -N 表示有N-1个线程正在进行扩容操作 正数或0代表hash表还没有被初始化,这个数值表示初始化或下一次进行扩容的大小,类似于扩容阈值。它的值始终是当前ConcurrentHashMap容量的0.75倍,这与loadfactor相对应。实际容量>=sizeCtl,则扩容。*/private transient volatile int sizeCtl;private transient volatile int transferIndex;//下一次扩容时调整的位置(+1)//自旋锁(通过CAS锁定)时,调整大小和/或创建CounterCells类时使用private transient volatile int cellsBusy;//CounterCells类的数组,大小为2的幂private transient volatile CounterCell[] counterCells;//View视图类private transient KeySetView<K,V> keySet;private transient ValuesView<K,V> values;private transient EntrySetView<K,V> entrySet;//Unsafe的相关操作,unsafe静态块控制其修改行为。//Unsafe类用于执行低级别、不安全操作的方法集合。private static final sun.misc.Unsafe U;private static final long SIZECTL;private static final long TRANSFERINDEX;private static final long BASECOUNT;private static final long CELLSBUSY;private static final long CELLVALUE;private static final long ABASE;private static final int ASHIFT;static {    try {        U = sun.misc.Unsafe.getUnsafe();        Class<?> k = ConcurrentHashMap.class;        SIZECTL = U.objectFieldOffset            (k.getDeclaredField("sizeCtl"));        TRANSFERINDEX = U.objectFieldOffset            (k.getDeclaredField("transferIndex"));        BASECOUNT = U.objectFieldOffset            (k.getDeclaredField("baseCount"));        CELLSBUSY = U.objectFieldOffset            (k.getDeclaredField("cellsBusy"));        Class<?> ck = CounterCell.class;        CELLVALUE = U.objectFieldOffset            (ck.getDeclaredField("value"));        Class<?> ak = Node[].class;        ABASE = U.arrayBaseOffset(ak);        int scale = U.arrayIndexScale(ak);        if ((scale & (scale - 1)) != 0)            throw new Error("data type scale not a power of two");        ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);    } catch (Exception e) {        throw new Error(e);    }}

2.构造函数

//无参构造方法,默认初始容量(16)、加载因子(0.75)和concurrencyLevel (16) 的新的map    public ConcurrentHashMap() {    }    //有容量的构造函数,    public ConcurrentHashMap(int initialCapacity) {        if (initialCapacity < 0)            throw new IllegalArgumentException();        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?                    MAXIMUM_CAPACITY :                   //最接近该容量的2的幂                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));        this.sizeCtl = cap; //初始化    }    //带有容器的构造类,将容器内元素全部put进map中    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {        this.sizeCtl = DEFAULT_CAPACITY;        putAll(m);    }    //带有初始容量、加载因子的构造器,其concurrencyLevel为1    public ConcurrentHashMap(int initialCapacity, float loadFactor) {        this(initialCapacity, loadFactor, 1);    }    //带有初始容量、加载因子和并发级别(能够同时更新ConccurentHashMap    //且不产生锁竞争的最大线程数)。    //其最终容量为initialCapacity的最接近的2的幂    public ConcurrentHashMap(int initialCapacity,                             float loadFactor, int concurrencyLevel) {        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)            throw new IllegalArgumentException();        if (initialCapacity < concurrencyLevel)   // Use at least as many bins            initialCapacity = concurrencyLevel;   // as estimated threads        long size = (long)(1.0 + (long)initialCapacity / loadFactor);        int cap = (size >= (long)MAXIMUM_CAPACITY) ?            MAXIMUM_CAPACITY : tableSizeFor((int)size);        this.sizeCtl = cap;    }

3.内部类

Node<K,V> implements Map.Entry<K,V>:<K,V>的实体类,只有get()方法,无set()方法。有以下属性:    final int hash;    final K key;    volatile V val; //volatile属性,保证可见性    volatile Node<K,V> next;    以及相应的构造方法:    Node(int hash, K key, V val, Node<K,V> next) {        this.hash = hash;        this.key = key;        this.val = val;        this.next = next;    }    和equals&hashcode和get方法    以及find方法,用于辅助map.get(),给出指定结点的key值和hash值找到对应的节点:    Node<K,V> find(int h, Object k) {        Node<K,V> e = this;        if (k != null) {            do {                K ek;                if (e.hash == h &&                    ((ek = e.key) == k || (ek != null && k.equals(ek))))                    return e;            } while ((e = e.next) != null);        }        return null;    }
MapEntry<K,V> implements Map.Entry<K,V>:可以被导出,即可以根据该类来对map进行相应操作。有以下属性:    final K key; // non-null    V val;       // non-null    final ConcurrentHashMap<K,V> map;    equals、hashcode、toString等方法,以及带参数的构造方法    以及getKey、getValue、setValue等方法
Segment<K,V> extends ReentrantLock implements Serializable:相比早期版本,该类现在只用于序列化和反序列化    private static final long serialVersionUID = 2249069246763182397L;    final float loadFactor;    Segment(float lf) { this.loadFactor = lf; }
Traverser:主要用于遍历,其子类有BaseIterator、KeySpliterator、ValueSpliterator、EntrySpliterator四个类。BaseIterator用于遍历,其它3个用于对键、值、实体的划分。BaseIterator又有三个子类,KeyIterator、ValueIterator和EntryIterator分别用于键、值和实体的遍历操作
ForwardingNode :一个用于连接两个table的节点类。它包含一个nextTable指针,用于指向下一张表。而且这个节点的key value next指针全部为null,它的hash值为-1。 这里面定义的find的方法是从nextTable里进行查询节点,而不是以自身为头节点进行查找
CollectionView<K,V,E> implements Collection<E>, java.io.Serializable:CollectionView抽象类主要定义了视图操作,其子类KeySetView、ValueSetView、EntrySetView分别表示键视图、值视图、键值对视图。对视图均可以进行操作。
CounterCell类,分发计数
TreeBin类、TreeNode类,用于辅助红黑树的构建,这些结点包装成TreeNode放在TreeBin对象中,由TreeBin完成对红黑树的包装

image

4.重要函数

1.重要的原子操作    //ASHITF等同于private static final    //查找指定位置i在tab表的节点    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i<<ASHIFT) + ABASE);    }    //执行CAS操作,比较c和tab[i]的值,若相同,则tab[i]=v    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,                                        Node<K,V> c, Node<K,V> v) {        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);    }    //另tab[i]=v,仅在上锁区被调用      static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);    }
2.作用等同于HashMap的hash()方法,只不过这个方法传递进来的参数直接是key的hashcode    static final int spread(int h) {        return (h ^ (h >>> 16)) & HASH_BITS;    }
3.初始化表函数initTable对于table的大小,会根据sizeCtl的值进行设置。只在第一次添加元素时才会初始化如果没有设置szieCtl的值,那么默认生成的table大小为16;否则,会根据sizeCtl的大小设置table大小。    private final Node<K,V>[] initTable() {        Node<K,V>[] tab; int sc;        while ((tab = table) == null || tab.length == 0) {            if ((sc = sizeCtl) < 0) //若sizeCtl<0,则丧失线程占有                Thread.yield(); // lost initialization race; just spin            //CAS操作,将sizeCtl设置成-1,表示该线程正在初始化            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {                try {                    //若表长度为0                    if ((tab = table) == null || tab.length == 0) {                        //判断sizeCtl是否大于0,是则容量为sc,不是则用默认容量16                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;                        @SuppressWarnings("unchecked")                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];                        table = tab = nt;                        //sc=n*(3/4)                        sc = n - (n >>> 2);                    }                } finally {                    //sizeCtl变成0.75*(table.length-1)                    sizeCtl = sc;                }                break;            }        }        return tab;    }
4.treeifBin,由链表转成红黑树    private final void treeifyBin(Node<K,V>[] tab, int index) {        Node<K,V> b; int n, sc;        if (tab != null) {            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)                tryPresize(n << 1); //若表容量小于64,则只扩容不变换            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {                synchronized (b) {                    if (tabAt(tab, index) == b) {                        TreeNode<K,V> hd = null, tl = null;                        for (Node<K,V> e = b; e != null; e = e.next) {                            TreeNode<K,V> p =                                new TreeNode<K,V>(e.hash, e.key, e.val,                                                  null, null);                            if ((p.prev = tl) == null)                                hd = p;                            else                                tl.next = p;                            tl = p;                        }                        setTabAt(tab, index, new TreeBin<K,V>(hd));                    }                }            }        }    }
5.put函数,不同于HashMap,其key和value均不能为null    public V put(K key, V value) {        return putVal(key, value, false);    }    public V putIfAbsent(K key, V value) {        return putVal(key, value, true);    }    public void putAll(Map<? extends K, ? extends V> m) {        tryPresize(m.size());   //预扩容表的大小        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())            putVal(e.getKey(), e.getValue(), false);    }    //put和putIfAbsent的方法实现    final V putVal(K key, V value, boolean onlyIfAbsent) {        if (key == null || value == null) throw new NullPointerException();        int hash = spread(key.hashCode());        int binCount = 0;        for (Node<K,V>[] tab = table;;) {   //tab为新表,无限循环,直到插入成功或失败            Node<K,V> f;             int n, i, fh;            if(tab == null||(n = tab.length) == 0)  //若表为null或长度为0(lazy init)                tab = initTable();  //对表进行初始化            //使用h&(tab.length-1),可以计算出该元素在tab中的位置            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {                if (casTabAt(tab, i, null,                             new Node<K,V>(hash, key, value, null)))                    break;                   // CAS操作,若为null,则用新Node替换,不需要加锁            }            else if ((fh = f.hash) == MOVED)    //MOVED=-1,检测到正在扩容                tab = helpTransfer(tab, f); //帮助其扩容            else {      //添加元素进tab                V oldVal = null;                synchronized (f) {  //对tab的相应位置的头结点加锁                    if (tabAt(tab, i) == f) {                        if (fh >= 0) {  //表示为链表头结点                            binCount = 1;                            for (Node<K,V> e = f;; ++binCount) {                                K ek;                                if (e.hash == hash &&                                    ((ek = e.key) == key ||                                     (ek != null && key.equals(ek)))) {                                    oldVal = e.val;                                    if (!onlyIfAbsent)  //判断是否是若存在则替换                                        e.val = value;                                    break;                                }                                Node<K,V> pred = e;                                if ((e = e.next) == null) {     //链表尾部直接插入                                    pred.next = new Node<K,V>(hash, key,                                                              value, null);                                    break;                                }                            }                        }                        else if (f instanceof TreeBin) {    //表示为树节点                            Node<K,V> p;                            binCount = 2;                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,                                                           value)) != null) {                                oldVal = p.val;                                if (!onlyIfAbsent)                                    p.val = value;                            }                        }                    }                }                if (binCount != 0) {                //若节点数已经大于8,且最大容量大于64,则转成树                    if (binCount >= TREEIFY_THRESHOLD)                          treeifyBin(tab, i);                    if (oldVal != null)                        return oldVal;                    break;                }            }        }        addCount(1L, binCount); //增加binCount的值        return null;    }
6.addCount方法,将binCount+1,用于将元素个数加1    private final void addCount(long x, int check) {        CounterCell[] as; long b, s;        //利用CAS方法更新baseCount的值        if ((as = counterCells) != null ||            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)){            CounterCell a; long v; int m;            boolean uncontended = true;            if (as == null || (m = as.length - 1) < 0 ||                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||                !(uncontended =                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {                fullAddCount(x, uncontended);                return;            }            if (check <= 1)                return;            s = sumCount();        }        //检测是否需要扩容        if (check >= 0) {            Node<K,V>[] tab, nt; int n, sc;            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&                   (n = tab.length) < MAXIMUM_CAPACITY) {                int rs = resizeStamp(n);                if (sc < 0) {                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||                        transferIndex <= 0)                        break;                    //如果已经有其他线程在执行扩容操作                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))                        transfer(tab, nt);                }                 //当前线程是唯一的或是第一个发起扩容的线程,此时nextTable=null                else if (U.compareAndSwapInt(this, SIZECTL, sc,                                             (rs << RESIZE_STAMP_SHIFT) + 2))                    transfer(tab, null);                s = sumCount();            }        }    }
7.helpTransfer方法,调用该方法帮助扩容操作,此时nextTable!=null。首先拿到这个nextTable对象,调用transfer方法。当本线程进入扩容方法的时候会直接进入复制阶段。    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {        Node<K,V>[] nextTab; int sc;        if (tab != null && (f instanceof ForwardingNode) &&            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {            int rs = resizeStamp(tab.length);//计算操作校验码            while (nextTab == nextTable && table == tab &&                   (sc = sizeCtl) < 0) {                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||                    sc == rs + MAX_RESIZERS || transferIndex <= 0)                    break;                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {                    transfer(tab, nextTab);                    break;                }            }            return nextTab;        }        return table;    }
8.get方法,根据key来查找value,没有加锁操作,只有CAS操作tabAt    public V get(Object key) {        Node<K,V>[] tab;    //新表        Node<K,V> e, p;             int n, eh; K ek;        int h = spread(key.hashCode()); //计算key的hash值        if ((tab = table) != null && (n = tab.length) > 0 &&            (e = tabAt(tab, (n - 1) & h)) != null) {    //key在tab上            //e的hash值在put进tab时已经用spread方法计算出            if ((eh = e.hash) == h) {                  if ((ek = e.key) == key || (ek != null && key.equals(ek)))                    return e.val;            }            else if (eh < 0)    //hash值小于0,说明节点在树上,直接查找                return (p = e.find(h, key)) != null ? p.val : null;            while ((e = e.next) != null) {                if (e.hash == h &&                    ((ek = e.key) == key || (ek != null && key.equals(ek))))                    return e.val;            }        }        return null;    }
9.transfer方法,扩容方法支持多线程进行扩容操作,而并没有加锁。扩容操作分成两部分。第一部分是构建一个nextTable,它的容量是原来的两倍,这个操作是单线程完成的。这个单线程的保证是通过RESIZE_STAMP_SHIFT这个常量经过一次运算来保证的,这个地方在后面会有提到;第二个部分就是将原来table中的元素复制到nextTable中,这里允许多线程进行操作。先来看一下单线程是如何完成的:它的大体思想就是遍历、复制的过程。首先根据运算得到需要遍历的次数i,然后利用tabAt方法获得i位置的元素:如果这个位置为空,就在原table中的i位置放入forwardNode节点,这个也是触发并发扩容的关键点;如果这个位置是Node节点(fh>=0),如果它是一个链表的头节点,就构造一个反序链表,把他们分别放在nextTable的i和i+n的位置上;如果这个位置是TreeBin节点(fh<0),也做一个反序处理,并且判断是否需要untreefi,把处理的结果分别放在nextTable的i和i+n的位置上遍历过所有的节点以后就完成了复制工作,这时让nextTable作为新的table,并且更新sizeCtl为新容量的0.75倍 ,完成扩容。再看一下多线程是如何完成的:else if ((fh = f.hash) == MOVED)            advance = true; 这段代码表示如果遍历到的节点是forward节点,就向后继续遍历,再加上给节点上锁的机制,就完成了多线程的控制。多线程遍历节点,处理了一个节点,就把对应点的值set为forward,另一个线程看到forward,就向后遍历。这样交叉就完成了复制工作。而且还很好的解决了线程安全的问题。private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {    int n = tab.length, stride;    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)        stride = MIN_TRANSFER_STRIDE; // subdivide range    if (nextTab == null) {            // initiating        try {            @SuppressWarnings("unchecked")            //构建一个新表,长度为原来表的二倍            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];            nextTab = nt;        } catch (Throwable ex) {      // try to cope with OOME            sizeCtl = Integer.MAX_VALUE;            return;        }        nextTable = nextTab;        transferIndex = n;    }    int nextn = nextTab.length;    //一个连接点指针,用于标志位    ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);    boolean advance = true; //并发关键属性,如果为true表示已被该节点处理过    boolean finishing = false; // to ensure sweep before committing nextTab    for (int i = 0, bound = 0;;) {        Node<K,V> f; int fh;        while (advance) {        //这个while循环体的作用就是在控制--i,可以依次遍历原hash表中的节点              int nextIndex, nextBound;            if (--i >= bound || finishing)                advance = false;            else if ((nextIndex = transferIndex) <= 0) {                i = -1;                advance = false;            }            else if (U.compareAndSwapInt                     (this, TRANSFERINDEX, nextIndex,                      nextBound = (nextIndex > stride ?                                   nextIndex - stride : 0))) {                bound = nextBound;                i = nextIndex - 1;                advance = false;            }        }        if (i < 0 || i >= n || i + n >= nextn) {            int sc;            //若所有节点都完成复制工作,就把nextTab赋值给table,令nextTable=null              if (finishing) {                nextTable = null;                table = nextTab;                sizeCtl = (n << 1) - (n >>> 1);//扩容阈值设置为原来容量的1.5倍                return;            }            //利用CAS方法更新这个扩容阈值            //在这里面sizectl值减一,说明新加入一个线程参与到扩容操作            if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {                if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)                    return;                finishing = advance = true;                i = n; // recheck before commit            }        }        //如果遍历到的节点为空 则放入ForwardingNode指针          else if ((f = tabAt(tab, i)) == null)            advance = casTabAt(tab, i, null, fwd);        //如果遍历到ForwardingNode节点,说明这个点已经被处理过        else if ((fh = f.hash) == MOVED)            advance = true; // already processed        else {            synchronized (f) {  //节点上锁                if (tabAt(tab, i) == f) {                    Node<K,V> ln, hn;                    if (fh >= 0) {  //说明是链表节点                        int runBit = fh & n;                        Node<K,V> lastRun = f;                        //构造两个新的链表,一个原链表,一个是原链表的反序                        for (Node<K,V> p = f.next; p != null; p = p.next) {                            int b = p.hash & n;                            if (b != runBit) {                                runBit = b;                                lastRun = p;                            }                        }                        if (runBit == 0) {                            ln = lastRun;                            hn = null;                        }                        else {                            hn = lastRun;                            ln = null;                        }                        for (Node<K,V> p = f; p != lastRun; p = p.next) {                            int ph = p.hash; K pk = p.key; V pv = p.val;                            if ((ph & n) == 0)                                ln = new Node<K,V>(ph, pk, pv, ln);                            else                                hn = new Node<K,V>(ph, pk, pv, hn);                        }                        //在nextTable的i位置上插入一个链表                        setTabAt(nextTab, i, ln);                        //在nextTable的i+n位置上插入另一个链表                        setTabAt(nextTab, i + n, hn);                        //在table的i位置上插入forwardNode节点,表示已处理过该节点                         setTabAt(tab, i, fwd);                        advance = true;                    }                    //对TreeBin对象进行处理,与上面的过程类似                    else if (f instanceof TreeBin) {                        TreeBin<K,V> t = (TreeBin<K,V>)f;                        TreeNode<K,V> lo = null, loTail = null;                        TreeNode<K,V> hi = null, hiTail = null;                        int lc = 0, hc = 0;                        for (Node<K,V> e = t.first; e != null; e = e.next) {                            int h = e.hash;                            TreeNode<K,V> p = new TreeNode<K,V>                                (h, e.key, e.val, null, null);                            if ((h & n) == 0) {                                if ((p.prev = loTail) == null)                                    lo = p;                                else                                    loTail.next = p;                                loTail = p;                                ++lc;                            }                            else {                                if ((p.prev = hiTail) == null)                                    hi = p;                                else                                    hiTail.next = p;                                hiTail = p;                                ++hc;                            }                        }                        //如果扩容后已经不再需要tree的结构 反向转换为链表结构                         ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :                            (hc != 0) ? new TreeBin<K,V>(lo) : t;                        hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :                            (lc != 0) ? new TreeBin<K,V>(hi) : t;                        setTabAt(nextTab, i, ln);                        setTabAt(nextTab, i + n, hn);                        setTabAt(tab, i, fwd);                        advance = true;                    }                }            }        }    }}

image

10.size相关操作只能给出近似值,因为有可能多线程操作,对map的size进行了改变    public int size() {          long n = sumCount();          return ((n < 0L) ? 0 :                  (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :                  (int)n);      }      //和size方法类似,jdk1.8中用来取代size方法    public long mappingCount() {          long n = sumCount();          return (n < 0L) ? 0L : n;    }      //统计的核心方法    final long sumCount() {        CounterCell[] as = counterCells; CounterCell a;        long sum = baseCount;        if (as != null) {            for (int i = 0; i < as.length; ++i) {                if ((a = as[i]) != null)                    sum += a.value; //所有counter的和            }        }        return sum;    }
0 0
原创粉丝点击