HDU 5476 Explore Track of Point 2015上海网络赛 几何题

来源:互联网 发布:ajax javascript区别 编辑:程序博客网 时间:2024/06/05 02:47

发霉的题解….(自己已经不会证)


题目见HDU 5476

给出等腰三角形ABC,AB=AC,M为BC中点。P点为三角形内使min{∠MPB+∠APC,∠MPC+∠APB} 最大的点。求P点轨迹。
则容易找到中线AM上的P点都满足使得∠MPB=∠MPC,∠APC=∠APB,则∠MPB+∠APC=∠MPC+∠APB=180°
故轨迹包含中线AM。
并且所有满足的P点都应满足:∠MPB+∠APC=∠MPC+∠APB=180°

任取中线上的一点P,可找到与之对应的一点Q,使得∠MQB=∠MPB,且∠AQC=∠APC,则∠MQB+∠AQC=180°成立,故Q点形成另一条子轨迹。
Q点的作法:

ΔBPM与ΔAPC的外接圆的交点。另一个交点即为P点。(由此可证明没有其他多余的轨迹)圆弧BM、AC分别对应圆上的∠MQB=∠MPB,且∠AQC=∠APC。

P与Q重合时,两者在ΔABC的内心上。

证明:P与Q重合,即ΔBPM与ΔAPC的外接圆相切。作切线PD,则:
∠DPM=∠APE=∠ACP(对顶角相等,弦切角相等)……[1]
又∠AMB=∠BPD=90°
则∠CPM=∠BPM=∠PDB(左右对称,余角相等)
则∠PCM=∠DPM(余角相等,对顶角相等)……[2]
由[1][2]得到∠ACP=∠PCM即PC是角平分线,又AP也为角平分线,故此时的P点为ΔABC的内心I。

猜测Q的轨迹是个圆弧
已证明 o(^▽^)o看code后面的段落
这一点是猜的,还没证明。但可以尝试证明∠BQC是个常量入手,得到Q的轨迹是个圆弧。
猜的依据是:轨迹关于AM左右对称,且经过ΔABC的内心时为最高点。

圆弧为ΔBCI的外接圆的一部分
前面已经证明了Q的轨迹过ΔABC的内心I。由对称得圆心在AM的延长线上,现在直接求该圆心的位置即可。

计算过程:
由三点坐标得到AB的距离为b,BC的距离为2a,AM即高为h,则内接圆的半径r=2ah/C=2ah/(2a+2b)=ah/(a+b)
ΔBCI的外接圆半径为R,且设M到圆心距离为x,a2+x2=(r+x)2,则x=a2r22r,R=r+x
圆弧BIC张角为2β=2arcsin(a/R)
圆弧BIC长为2Rβ

附code:

#include <cstdio>#include <iostream>#include <cstring>#include <queue>#include <algorithm>#include <cmath>using namespace std;struct node{    double x, y;}A, B, C, M;double dis(node a, node b){    return sqrt(pow(a.x-b.x, 2)+pow(a.y-b.y, 2));}int main(){    int T, o = 0;    scanf("%d", &T);    while(T--)    {        scanf("%lf%lf%lf%lf%lf%lf", &A.x, &A.y, &B.x, &B.y, &C.x, &C.y);        M.x = (B.x+C.x)/2, M.y = (B.y+C.y)/2;        double a = dis(B, C)/2, b = dis(A, B), h = dis(A,M);        double r = a*h/(a+b);        double R = (a*a-r*r)/r/2+r;        double ans = 2*R*asin(a/R);        //printf("%f %f %f %f %f %f\n", a, b, h, r, R, ans);        ans += h;        printf("Case #%d: %.4f\n", ++o, ans);    }    return 0;}

补充证明

重新描述一遍题

在圆O外一点作切线AB、AC,M为BC中点,连AM交圆O于P、F。在劣弧BC上取一点Q,连AG延长交圆O于D。
求证:P为ΔABC的内心,∠BQM+∠AQC=180°
证明:你可以先了解一点关于调和点列调和线束的知识。
因为APMF为调和点列,所以CA、CP、CB、CF为调和线束

CP垂直于CF,则CP平分∠ACB。
又AP平分∠BAC,则P为ΔABC的内心。

因为APMF为调和点列,所以DA、DP、DM、DF为调和线束。
DP垂直于DF,则DP平分∠ADM。∠ADP=∠MDP.
又∠CDP=∠BDP,则∠CDQ=∠BDM
又∠CQD=∠CBQ,则∠BDM=∠CBQ……[3]

因为CA、CP、CB、CF为调和线束,所以AQED为调和点列,所以MA、MQ、ME、MD为调和线束。
MA垂直于MC,则MC平分∠QMD。
则∠QMC=∠DMC,又由[3],则∠BQM=∠MBD=∠CQD

则∠BQM+∠AQC=∠CQD+∠AQC=180°

证毕#

0 0
原创粉丝点击