二分图匹配相关

来源:互联网 发布:医院排队叫号软件 编辑:程序博客网 时间:2024/05/21 08:04

ACM模版

二分图匹配

匈牙利算法

邻接矩阵+DFS

/* *  初始化:g[][]两边顶点的划分情况  *  建立g[i][j]表示i->j的有向边就可以了,是左边向右边的匹配  *  g没有边相连则初始化为0 *  uN是匹配左边的顶点数,vN是匹配右边的顶点数  *  调用:res=hungary();输出最大匹配数  *  优点:适用于稠密图,DFS找增广路,实现简洁易于理解 *  时间复杂度:O(VE)  *///顶点编号从0开始的const int MAXN = 510;int uN, vN;         //  u,v的数目,使用前面必须赋值int g[MAXN][MAXN];  //  邻接矩阵int linker[MAXN];bool used[MAXN];bool dfs(int u){    for (int v = 0; v < vN; v++)    {        if (g[u][v] && !used[v])        {            used[v] = true;            if (linker[v] == -1 || dfs(linker[v]))            {                linker[v] = u;                return true;            }        }    }    return false;}int hungary(){    int res = 0;    memset(linker,-1,sizeof(linker));    for (int u = 0; u < uN; u++)    {        memset(used, false, sizeof(used));        if (dfs(u))        {            res++;        }    }    return res;}

邻接表+DFS

/* *  使用前用init()进行初始化,给uN赋值 *  加边使用函数addedge(u,v) */const int MAXN = 5010;  //  点数的最大值const int MAXM = 50010; //  边数的最大值struct Edge{    int to, next;} edge[MAXM];int head[MAXN], tot;void init(){    tot = 0;    memset(head, -1, sizeof(head));    return ;}void addedge(int u, int v){    edge[tot].to = v;    edge[tot].next = head[u];    head[u] = tot++;    return ;}int linker[MAXN];bool used[MAXN];int uN;bool dfs(int u){    for (int i = head[u]; i != -1; i = edge[i].next)    {        int v = edge[i].to;        if (!used[v])        {            used[v] = true;            if (linker[v] == -1 || dfs(linker[v]))            {                linker[v] = u;                return true;            }        }    }    return false;}int hungary(){    int res = 0;    memset(linker, -1, sizeof(linker));    for (int u = 0; u < uN; u++)    //  点的编号0~uN-1    {        memset(used, false, sizeof(used));        if (dfs(u))        {            res++;        }    }    return res;}

邻接矩阵+BFS

/* *  INIT: g[][]邻接矩阵; *  CALL: res = MaxMatch();Nx, Ny初始化!!!  *  优点:适用于稀疏二分图,边较少,增广路较短。 *  匈牙利算法的理论复杂度是O(VE) */const int MAXN = 1000;int g[MAXN][MAXN], Mx[MAXN], My[MAXN], Nx, Ny;int chk[MAXN], Q[MAXN], prev[MAXN];int MaxMatch(){    int res = 0;    int qs, qe;    memset(Mx, -1, sizeof(Mx));    memset(My, -1, sizeof(My));    memset(chk, -1, sizeof(chk));    for (int i = 0; i < Nx; i++)    {        if (Mx[i] == -1)        {            qs = qe = 0;            Q[qe++] = i;            prev[i] = -1;            bool flag = 0;            while (qs < qe && !flag)            {                int u = Q[qs];                for (int v = 0; v < Ny && !flag; v++)                {                    if (g[u][v] && chk[v] != i)                    {                        chk[v] = i; Q[qe++] = My[v];                        if (My[v] >= 0)                        {                            prev[My[v]] = u;                        }                        else                        {                            flag = 1;                            int d = u, e = v;                            while (d != -1)                            {                                int t = Mx[d];                                Mx[d] = e;                                My[e] = d;                                d = prev[d];                                e = t;                            }                        }                    }                }                qs++;            }            if (Mx[i] != -1)            {                res++;            }        }    }    return res;}

Hopcroft-Carp算法

邻接矩阵+DFS

/* *  INIT: g[][]邻接矩阵; *  CALL: res = MaxMatch(); Nx, Ny要初始化!!! *  时间复杂度: O(V^0.5 * E) */const int MAXN = 3001;const int INF = 1 << 28;int g[MAXN][MAXN], Mx[MAXN], My[MAXN], Nx, Ny;int dx[MAXN], dy[MAXN], dis;bool vst[MAXN];bool searchP(){    queue<int> Q;    dis = INF;    memset(dx, -1, sizeof(dx));    memset(dy, -1, sizeof(dy));    for (int i = 0; i < Nx; i++)    {        if (Mx[i] == -1)        {            Q.push(i); dx[i] = 0;        }    }    while (!Q.empty())    {        int u = Q.front();        Q.pop();        if (dx[u] > dis)        {            break;        }        for (int v = 0; v < Ny; v++)        {            if (g[u][v] && dy[v] == -1)            {                dy[v] = dx[u]+1;                if (My[v] == -1)                {                    dis = dy[v];                }                else                {                    dx[My[v]] = dy[v] + 1;                    Q.push(My[v]);                }            }        }    }    return dis != INF;}bool DFS(int u){    for (int v = 0; v < Ny; v++)    {        if (!vst[v] && g[u][v] && dy[v] == dx[u] + 1)        {            vst[v] = 1;            if (My[v] != -1 && dy[v] == dis)            {                continue;            }            if (My[v] == -1 || DFS(My[v]))            {                My[v] = u; Mx[u] = v;                return 1;            }        }    }    return 0;}int MaxMatch(){    int res = 0;    memset(Mx, -1, sizeof(Mx));    memset(My, -1, sizeof(My));    while (searchP())    {        memset(vst, 0, sizeof(vst));        for (int i = 0; i < Nx; i++)        {            if (Mx[i] == -1 && DFS(i))            {                res++;            }        }    }    return res;}

邻接表+DFS

/* *  复杂度O(sqrt(n)*E) *  邻接表存图,vector实现 *  vector先初始化,然后假如边 *  uN为左端的顶点数,使用前赋值(点编号0开始) */const int MAXN = 3000;const int INF = 0x3f3f3f3f;vector<int>G[MAXN];int uN;int Mx[MAXN], My[MAXN];int dx[MAXN], dy[MAXN];int dis;bool used[MAXN];bool SearchP(){    queue<int>Q;    dis = INF;    memset(dx, -1, sizeof(dx));    memset(dy, -1, sizeof(dy));    for (int i = 0 ; i < uN; i++)    {        if(Mx[i] == -1)        {            Q.push(i);            dx[i] = 0;        }    }    while (!Q.empty())    {        int u = Q.front();        Q.pop();        if (dx[u] > dis)        {            break;        }        int sz = (int)G[u].size();        for (int i = 0; i < sz; i++)        {            int v = G[u][i];            if (dy[v] == -1)            {                dy[v] = dx[u] + 1;                if (My[v] == -1)                {                    dis = dy[v];                }                else                {                    dx[My[v]] = dy[v] + 1;                    Q.push(My[v]);                }            }        }    }    return dis != INF;}bool DFS(int u){    int sz = (int)G[u].size();    for (int i = 0; i < sz; i++)    {        int v = G[u][i];        if (!used[v] && dy[v] == dx[u] + 1)        {            used[v] = true;            if (My[v] != -1 && dy[v] == dis)            {                continue;            }            if (My[v] == -1 || DFS(My[v]))            {                My[v] = u;                Mx[u] = v;                return true;            }        }    }    return false;}int MaxMatch(){    int res = 0;    memset(Mx, -1, sizeof(Mx));    memset(My, -1, sizeof(My));    while (SearchP())    {        memset(used, false, sizeof(used));        for (int i = 0; i < uN; i++)        {            if(Mx[i] == -1 && DFS(i))            {                res++;            }        }    }    return res;}

二分图最佳匹配

Kuhn Munkras算法

/* *  邻接距阵形式,复杂度O(m*m*n) 返回最佳匹配值,传入二分图大小m,n  *  邻接距阵mat,表示权,match1,match2返回一个最佳匹配,未匹配顶点 *  match值为-1,一定注意m<=n,否则循环无法终止,最小权匹配可将权值  *  取相反数 *  初始化:for (i = 0; i < MAXN; ++i) *          for (j = 0; j < MAXN ; ++j) *              mat[i][j] = -inf;  *  对于存在的边:mat[i][j] = val ;    //  注意,不能有负值 */#define MAXN 310#define inf 1000000000#define _clr(x) memset(x, -1, sizeof(int) * MAXN)int kuhn_munkras(int m, int n, int mat[][MAXN], int *match_1, int *match_2){    int s[MAXN], t[MAXN], l_1[MAXN], l_2[MAXN];    int p, q, ret = 0;    int i, j, k;    for (i = 0; i < m; i++)    {        for (l_1[i] = -inf, j = 0; j < n; j++)        {            l_1[i] = mat[i][j] > l_1[i] ? mat[i][j] : l_1[i];        }        if (l_1[i] == -inf)        {            return -1;  //  无结果        }    }    for (i = 0; i < n; l_2[i++] = 0);    for (_clr(match_1), _clr(match_2), i = 0; i < m; i++)    {        for (_clr(t), s[p = q = 0] = i; p <= q && match_1[i] < 0; p++)        {            for (k = s[p], j = 0; j < n && match_1[i] < 0; p++)            {                if (l_1[k] + l_2[j] == mat[k][j] && t[j] < 0)                {                    s[++q] = match_2[j], t[j] = k;                    if (s[q] < 0)                    {                        for (p = j; p >= 0; j = p)                        {                            match_2[j] = k = t[j];                            p = match_1[k];                            match_1[k] = j;                        }                    }                }            }        }        if (match_1[i] < 0)        {            for (i--, p = inf, k = 0; k <= q; k++)            {                for (j = 0; j < n; j++)                {                    if (t[j] < 0 && l_1[s[k]] + l_2[j] - mat[s[k]][j] < p)                    {                        p = l_1[s[k]] + l_2[j] - mat[s[k]][j];                    }                }            }            for (j = 0; j < n; l_2[j] += t[j] < 0 ? 0 : p, j++);            for (k = 0; k <= q; l_1[s[k++]] -= p);        }    }    for (i = 0; i < m; i++)    {   //  if处理无匹配的情况!!        if (match_1[i] < 0)             //  ???        {            return -1;        }        if (mat[i][match_1[i]] <= -inf) //  ???        {            return -1;        }        ret += mat[i][match_1[i]];    }    return ret;}

二分图多重匹配

const int MAXN = 1010;const int MAXM = 510;int uN, vN;int g[MAXN][MAXM];int linker[MAXM][MAXN];bool used[MAXM];int num[MAXM];  //  右边最大的匹配数bool dfs(int u){    for (int v = 0; v < vN; v++)    {        if (g[u][v] && !used[v])        {            used[v] = true;            if (linker[v][0] < num[v])            {                linker[v][++linker[v][0]] = u;                return true;            }            for (int i = 1; i <= num[0]; i++)            {                if (dfs(linker[v][i]))                {                    linker[v][i] = u;                    return true;                }            }        }    }    return false;}int hungary(){    int res = 0;    for (int i = 0; i < vN; i++)    {        linker[i][0] = 0;    }    for (int u = 0; u < uN; u++)    {        memset(used, false, sizeof(used));        if (dfs(u))        {            res++;        }    }    return res;}
0 0