组合数取模(逆元+快速幂)

来源:互联网 发布:python下怎样安装mysql 编辑:程序博客网 时间:2024/06/10 08:37
Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu
 
LightOJ 1067
 

Description
Given n different objects, you want to take k of them. How many ways to can do it?
For example, say there are 4 items; you want to take 2 of them. So, you can do it 6 ways.
Take 1, 2
Take 1, 3
Take 1, 4
Take 2, 3
Take 2, 4
Take 3, 4

Input
Input starts with an integer T (≤ 2000), denoting the number of test cases.

Each test case contains two integers n (1 ≤ n ≤ 106), k (0 ≤ k ≤ n).


Output
For each case, output the case number and the desired value. Since the result can be very large, you have to print the result modulo 1000003.

Sample Input
3
4 2
5 0
6 4
Sample Output
Case 1: 6
Case 2: 1

Case 3: 15

除法求模不能类似乘法,对于(A/B)mod C,直接(A mod C)/ (B mod C)是错误的;找到B的逆元b(b=B^-1);求出(A*b)modC即可;

由费马小定理:B 关于 P 的逆元为  B^(p-2);

费马小定理(Fermat Theory)是数论中的一个重要定理,其内容为: 假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p)。即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。所以,a^-1*a=1=a^(p-1),所以:a^-1=a^(p-2);

数学排列组合公式:C(n,m)= n!/(m!*(n-m)!)

代码:

#include<cstdio>  #include<cstring>  #include<algorithm>  using namespace std;  #define LL long long  #define G  1100000  #define mod 1000003  LL pri[G];  LL ni[G],ans;  LL pow(LL a,int b)  {      LL ans=1,base=a;      while (b>0)      {          if (b%2==1)              ans=(base*ans)%mod;          base=(base*base)%mod;          b/=2;      }      return ans;  }  void s()   //打表 {      pri[0]=1;      ni[0]=1;      for (int i=1;i<G ;i++)      {          pri[i]=pri[i-1]*i%mod;  //N!         ni[i]=pow(pri[i],mod-2);      }  }  int main()  {      s();      int t,n,b,k=1;scanf("%d",&t);      while (t--)      {          scanf("%d%d",&n,&b);          ans=((pri[n]*ni[b]%mod)*ni[n-b])%mod; // C(n,m)= n!/(m!*(n-m)!)        printf("Case %d: %lld\n",k++,ans);      }      return 0;  }  


0 0
原创粉丝点击