围产期的早产儿的肠道基因标记的甲基化改变

来源:互联网 发布:linux服务器占有率 编辑:程序博客网 时间:2024/04/28 12:01

marked methylation changes in intestinal genes during the perinatal period of preterm
neonates
http://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-15-716

    • 摘要
    • 关键词
    • 研究背景
    • 研究结果
    • 总结
    • 参考文献


研究对象:围产期的早产儿(用早产猪近似代替)
期刊:BMC Genomics
发表时间:2014年8月26日


摘要

Background
The serious feeding- and microbiota-associated intestinal disease, necrotizing enterocolitis (NEC), occurs mainly in infants born prematurely (5-10% of all newborns) and most frequently after formula-feeding. We hypothesized that changes in gene methylation is involved in the prenatal maturation of the intestine and its response to the first days of formula feeding, potentially leading to NEC in preterm pigs used as models for preterm infants.

Results
Reduced Representation Bisulfite Sequencing (RRBS) was used to assess if changes in intestinal DNA methylation are associated with formula-induced NEC outbreak and advancing age from 10 days before birth to 4 days after birth. Selected key genes with differentially methylated gene regions (DMRs) between groups were further validated by HiSeq-based bisulfite sequencing PCR and RT-qPCR to assess methylation and expression levels. Consistent with the maturation of many intestinal functions in the perinatal period, methylation level of most genes decreased with advancing pre- and postnatal age. The highest number of DMRs was identified between the newborn and 4 d-old preterm pigs. There were few intestinal DMR differences between unaffected pigs and pigs with initial evidence of NEC. In the 4 d-old formula-fed preterm pigs, four genes associated with intestinal metabolism (CYP2W1, GPR146, TOP1MT, CEND1) showed significant hyper-methylation in their promoter CGIs, and thus, down-regulated transcription. Methylation-driven down-regulation of such genes may predispose the immature intestine to later metabolic dysfunctions and severe NEC lesions.

Conclusions
Pre- and postnatal changes in intestinal DNA methylation may contribute to high NEC sensitivity in preterm neonates. Optimizing gene methylation changes via environmental stimuli (e.g. diet, nutrition, gut microbiota), may help to make immature newborn infants more resistant to gut dysfunctions, both short and long term.

关键词

DNA甲基化;早产儿;坏死性小肠结肠炎

研究背景

与严重的喂养和微生物相关的肠道疾病——坏死性小肠结肠炎(NEC),主要发生于早产儿(早产儿占新生儿的5-10%),并且最常见于在配方奶喂养之后。我们猜想基因甲基化的改变与产前成熟的肠道相关,并且在配方喂养的第一天就有反映,在作为早产儿模型的早产猪中可能导致NEC。

研究结果

1、RRBS数据生成和猪小肠甲基化的特征
简化表示重亚硫酸盐测序(Reduced Representation Bisulfite Sequencing (RRBS) )被用来评估是否肠道的DNA甲基化变化与诱导性的配方饲料使得NEC爆发同年龄从出生前10天到出生后4天相关。

2、四组仔猪的差异甲基化模型
在小组中通过具有差异甲基化基因区域(DMRs)选择的关键基因被进一步认定是有效的,通过基于HiSeq的亚硫酸盐测序的PCR技术和逆转录定量聚合酶链反应(RT-qPCR)去评估甲基化和表达水平。
这里写图片描述
表一:全球DNA甲基化谱

这里写图片描述
表二:与产前发育有关的DMRs总结(PN-DMRs, 0d-term vs. 0d-preterm), 新生的响应 (NN-DMRs, 4d-preterm vs. 0d-preterm) 和NEC的发展 (NEC-DMRs, 4d-preterm-NEC vs. 4d-preterm)。
3、不同的产前和新生儿期基因的DNA甲基化降低对肠道成熟的影响
在出生前与出生后时期,大多数基因的甲基化水平下降与提升,同围生期多种肠道功能的成熟一致。

4、结合高通量测序的BSP技术的发展有助于甲基化验证
最大数量的差异甲基化基因区域(DMRs)被发现于新生猪仔和4天早产猪之间。
在受影响的猪和带有NEC的初步证据的猪之间,几乎不存在肠的差异甲基化基因区域(DMRs)的不同。
这里写图片描述
表三:BSP结合高通量测序HiSeq甲基化验证。

5、主要基因的表达被CGI的超甲基化所抑制
在配方喂养的4天大的早产猪中,肠道代谢相关的四个基因(cyp2w1,gpr146,Top1mt,cend1)显示了显著的超甲基化在其启动子的CGIs,并且因此下调转录。
这些基因的甲基化驱动下调,可能会使不成熟的肠道代谢紊乱和严重的NEC病变。
这里写图片描述
表四:新生儿的启动子甲基化与基因转录抑制有关。

总结

出生前后肠DNA甲基化的变化,可能有助于高NEC灵敏度在早产儿中。
通过环境刺激(例如,饮食、营养、肠道菌群)去优化基因的甲基化改变,可能更有助于使未成熟的新生短期和长期的抵抗肠功能障碍。

参考文献

1、Goldberg AD, Allis CD, Bernstein E: Epigenetics: a landscape takes shape. Cell. 2007, 128 (4): 635-638.
2、Suzuki MM, Bird A: DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008, 9 (6): 465-476.
3、Morgan HD, Santos F, Green K, Dean W, Reik W: Epigenetic reprogramming in mammals. Hum Mol Genet. 2005, 14 (Spec No 1): R47-R58.
4、Anderson OS, Sant KE, Dolinoy DC: Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem. 2012, 23 (8): 853-859.
5、Sangild PT: Gut responses to enteral nutrition in preterm infants and animals. Exp Biol Med (Maywood). 2006, 231 (11): 1695-1711.
6、Henry MC, Moss RL: Neonatal necrotizing enterocolitis. Semin Pediatr Surg. 2008, 17 (2): 98-109.
7、Bjornvad CR, Schmidt M, Petersen YM, Jensen SK, Offenberg H, Elnif J, Sangild PT: Preterm birth makes the immature intestine sensitive to feeding-induced intestinal atrophy. Am J Physiol Regul Integr Comp Physiol. 2005, 289 (4): R1212-R1222.
8、Jiang P, Wan JM, Cilieborg MS, Sit WH, Sangild PT: Premature delivery reduces intestinal cytoskeleton, metabolism, and stress response proteins in newborn formula-fed pigs. J Pediatr Gastroenterol Nutr. 2013, 56 (6): 615-622.
9、Siggers J, Sangild PT, Jensen TK, Siggers RH, Skovgaard K, Stoy AC, Jensen BB, Thymann T, Bering SB, Boye M: Transition from parenteral to enteral nutrition induces immediate diet-dependent gut histological and immunological responses in preterm neonates. Am J Physiol Gastrointest Liver Physiol. 2011, 301 (3): G435-G445.
10、PubMedView ArticleGoogle ScholarJiang P, Siggers JL, Ngai HH, Sit WH, Sangild PT, Wan JM: The small intestine proteome is changed in preterm pigs developing necrotizing enterocolitis in response to formula feeding. J Nutr. 2008, 138 (10): 1895-1901.
11、Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, Adler A, Vera Garcia C, Rohde S, Say L, Lawn JE: National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012, 379 (9832): 2162-2172.
12、Morgan J, Young L, McGuire W: Delayed introduction of progressive enteral feeds to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev. 2013, 5: CD001970
13、Jiang P, Sangild PT, Siggers RH, Sit WH, Lee CL, Wan JM: Bacterial colonization affects the intestinal proteome of preterm pigs susceptible to necrotizing enterocolitis. Neonatology. 2011, 99 (4): 280-288.
14、Bjornvad CR, Thymann T, Deutz NE, Burrin DG, Jensen SK, Jensen BB, Molbak L, Boye M, Larsson LI, Schmidt M, Michaelsen KF, Sangild PT: Enteral feeding induces diet-dependent mucosal dysfunction, bacterial proliferation, and necrotizing enterocolitis in preterm pigs on parenteral nutrition. Am J Physiol Gastrointest Liver Physiol. 2008, 295 (5): G1092-G1103.
15、Sangild PT, Petersen YM, Schmidt M, Elnif J, Petersen TK, Buddington RK, Greisen G, Michaelsen KF, Burrin DG: Preterm birth affects the intestinal response to parenteral and enteral nutrition in newborn pigs. J Nutr. 2002, 132 (12): 3786-3794.
16、Li Y, Ostergaard MV, Jiang P, Chatterton DE, Thymann T, Kvistgaard AS, Sangild PT: Whey Protein Processing Influences Formula-Induced Gut Maturation in Preterm Pigs. J Nutr. 2013, 143 (12): 1934-1942.
17、Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES: Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008, 454 (7205): 766-770.
18、Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R: Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 2005, 33 (18): 5868-5877.
19、Wang L, Sun J, Wu H, Liu S, Wang J, Wu B, Huang S, Li N, Zhang X: Systematic assessment of reduced representation bisulfite sequencing to human blood samples: A promising method for large-sample-scale epigenomic studies. J Biotechnol. 2012, 157 (1): 1-6.
20、Wang J, Xia Y, Li L, Gong D, Yao Y, Luo H, Lu H, Yi N, Wu H, Zhang X, Tao Q, Gao F: Double restriction-enzyme digestion improves the coverage and accuracy of genome-wide CpG methylation profiling by reduced representation bisulfite sequencing. BMC Genomics. 2013, 14: 11-
21、Bird A: DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16 (1): 6-21.
PubMedView ArticleGoogle Scholar
22、Suzuki R, Shimodaira H: Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006, 22 (12): 1540-1542.
23、Li Y, Zhu J, Tian G, Li N, Li Q, Ye M, Zheng H, Yu J, Wu H, Sun J, Zhang H, Chen Q, Luo R, Chen M, He Y, Jin X, Zhang Q, Yu C, Zhou G, Sun J, Huang Y, Zheng H, Cao H, Zhou X, Guo S, Hu X, Li X, Kristiansen K, Bolund L, Xu J: The DNA methylome of human peripheral blood mononuclear cells. PLoS Biol. 2010, 8 (11): e1000533-
24、Chow JC, Yen Z, Ziesche SM, Brown CJ: Silencing of the mammalian X chromosome. Annu Rev Genomics Hum Genet. 2005, 6: 69-92.
25、Zhang B, Kirov S, Snoddy J: WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 2005, 33 (Web Server issue): W741-W748.
26、Wang J, Duncan D, Shi Z, Zhang B: WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 2013, 41 (Web Server issue): W77-W83.
27、Waterland RA: Epigenetic mechanisms and gastrointestinal development. J Pediatr. 2006, 149 (5 Suppl): S137-S142.
28、Reed K, Poulin ML, Yan L, Parissenti AM: Comparison of bisulfite sequencing PCR with pyrosequencing for measuring differences in DNA methylation. Anal Biochem. 2010, 397 (1): 96-106.
29、Hafner M, Rezen T, Rozman D: Regulation of hepatic cytochromes p450 by lipids and cholesterol. Curr Drug Metab. 2011, 12 (2): 173-185.
30、Reimann F, Tolhurst G, Gribble FM: G-protein-coupled receptors in intestinal chemosensation. Cell Metab. 2012, 15 (4): 421-431.
PubMedView ArticleGoogle Scholar
31、Douarre C, Sourbier C, Dalla Rosa I, Brata Das B, Redon CE, Zhang H, Neckers L, Pommier Y: Mitochondrial topoisomerase I is critical for mitochondrial integrity and cellular energy metabolism. PLoS One. 2012, 7 (7): e41094-
PubMed CentralPubMedView ArticleGoogle Scholar
32、Makri G, Lavdas AA, Katsimpardi L, Charneau P, Thomaidou D, Matsas R: Transplantation of embryonic neural stem/precursor cells overexpressing BM88/Cend1 enhances the generation of neuronal cells in the injured mouse cortex. Stem Cells. 2010, 28 (1): 127-139.
PubMedGoogle Scholar
33、De Santa BP, van den Brink GR, Roberts DJ: Development and differentiation of the intestinal epithelium. Cell Mol Life Sci. 2003, 60 (7): 1322-1332.
View ArticleGoogle Scholar
34、Martino D, Loke YJ, Gordon L, Ollikainen M, Cruickshank MN, Saffery R, Craig JM: Longitudinal, genome-scale analysis of DNA methylation in twins from birth to 18 months of age reveals rapid epigenetic change in early life and pair-specific effects of discordance. Genome Biol. 2013, 14 (5): R42-
PubMed CentralPubMedView ArticleGoogle Scholar
35、Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, Diez J, Sanchez-Mut JV, Setien F, Carmona FJ, Puca AA, Sayols S, Pujana MA, Serra-Musach J, Iglesias-Platas I, Formiga F, Fernandez AF, Fraga MF, Heath SC, Valencia A, Gut IG, Wang J, Esteller M: Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci U S A. 2012, 109 (26): 10522-10527.
PubMed CentralPubMedView ArticleGoogle Scholar
36、Sangild PT, Thymann T, Schmidt M, Stoll B, Burrin DG, Buddington RK: Invited review: the preterm pig as a model in pediatric gastroenterology. J Anim Sci. 2013, 91 (10): 4713-4729.
PubMed CentralPubMedView ArticleGoogle Scholar
37、Tsui DW, Chiu RW, Lo YD: Epigenetic approaches for the detection of fetal DNA in maternal plasma. Chimerism. 2010, 1 (1): 30-35.
PubMed CentralPubMedView ArticleGoogle Scholar
38、Sangild PT, Siggers RH, Schmidt M, Elnif J, Bjornvad CR, Thymann T, Grondahl ML, Hansen AK, Jensen SK, Boye M, Moelbak L, Buddington RK, Weström BR, Holst JJ, Burrin DG: Diet- and colonization-dependent intestinal dysfunction predisposes to necrotizing enterocolitis in preterm pigs. Gastroenterology. 2006, 130 (6): 1776-1792.
PubMedView ArticleGoogle Scholar
39、Sato N: Central role of mitochondria in metabolic regulation of liver pathophysiology. J Gastroenterol Hepatol. 2007, 22 (Suppl 1): S1-S6.
PubMedView ArticleGoogle Scholar
40、Pacha J: Development of intestinal transport function in mammals. Physiol Rev. 2000, 80 (4): 1633-1667.
PubMedGoogle Scholar
41、Ade-Ajayi N, Spitz L, Kiely E, Drake D, Klein N: Intestinal glycosaminoglycans in neonatal necrotizing enterocolitis. Br J Surg. 1996, 83 (3): 415-418.
PubMedView ArticleGoogle Scholar
42、Koropatkin NM, Cameron EA, Martens EC: How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol. 2012, 10 (5): 323-335.
PubMed CentralPubMedGoogle Scholar
43、Puiman PJ, Jensen M, Stoll B, Renes IB, De Bruijn AC, Dorst K, Schierbeek H, Schmidt M, Boehm G, Burrin DG, Sangild PT, van Goudoever JB: Intestinal threonine utilization for protein and mucin synthesis is decreased in formula-fed preterm pigs. J Nutr. 2011, 141 (7): 1306-1311.
PubMedView ArticleGoogle Scholar
44、Janeway CA, Medzhitov R: Innate immune recognition. Annu Rev Immunol. 2002, 20: 197-216.
PubMedView ArticleGoogle Scholar
45、Menon R, Conneely KN, Smith AK: DNA methylation: an epigenetic risk factor in preterm birth. Reprod Sci. 2012, 19 (1): 6-13.
PubMedView ArticleGoogle Scholar
46、Mizutani Y, Kihara A, Igarashi Y: Identification of the human sphingolipid C4-hydroxylase, hDES2, and its up-regulation during keratinocyte differentiation. FEBS Lett. 2004, 563 (1–3): 93-97.
PubMedView ArticleGoogle Scholar
47、Moller HK, Thymann T, Fink LN, Frokiaer H, Kvistgaard AS, Sangild PT: Bovine colostrum is superior to enriched formulas in stimulating intestinal function and necrotising enterocolitis resistance in preterm pigs. Br J Nutr. 2011, 105 (1): 44-53.
PubMedView ArticleGoogle Scholar
48、Mace OJ, Marshall F: Digestive physiology of the pig symposium: gut chemosensing and the regulation of nutrient absorption and energy supply. J Anim Sci. 2013, 91 (5): 1932-1945.
PubMedView ArticleGoogle Scholar
49、Yosten GL, Kolar GR, Redlinger LJ, Samson WK: Evidence for an interaction between proinsulin C-peptide and GPR146. J Endocrinol. 2013, 218 (2): B1-B8.
View ArticleGoogle Scholar
50、Bertino E, Arslanoglu S, Martano C, Di Nicola P, Giuliani F, Peila C, Cester E, Pirra A, Coscia A, Moro G: Biological, nutritional and clinical aspects of feeding preterm infants with human milk. J Biol Regul Homeost Agents. 2012, 26 (3 Suppl): 9-13.
PubMedGoogle Scholar
51、Zhou J, Li J, Chen J, Liu Y, Gao W, Ding Y: Over-expression of CDH22 is associated with tumor progression in colorectal cancer. Tumour Biol. 2009, 30 (3): 130-140.
PubMedView ArticleGoogle Scholar
52、Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, Essers J, Mitrovic M, Ning K, Cleynen I, Theatre E, Spain SL, Raychaudhuri S, Goyette P, Wei Z, Abraham C, Achkar JP, Ahmad T, Amininejad L, Ananthakrishnan AN, Andersen V, Andrews JM, Baidoo L, Balschun T, Bampton PA, Bitton A: Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012, 491 (7422): 119-124.
PubMed CentralPubMedView ArticleGoogle Scholar
53、Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J: SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009, 25 (15): 1966-1967.
PubMedView ArticleGoogle Scholar
54、Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR: Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009, 462 (7271): 315-322.
PubMed CentralPubMedView ArticleGoogle Scholar
55、Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc. 1995, 57: 289-300.
Google Scholar
56、Gao F, Zhang J, Gong D: Data showing marked methylation changes of intestinal genes in the neonatal period of preterm neonates. Giga Sci Database. 2013
Google Scholar

0 0