Bluedroid GKI源码分析

来源:互联网 发布:淘宝卷皮折扣 编辑:程序博客网 时间:2024/05/20 04:28


首先以gki模块的初始化为入口,在gki_ulinux.c中,如下:
 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
void GKI_init(void)
{
    pthread_mutexattr_t attr;
    tGKI_OS             *p_os;
 
    memset (&gki_cb,0, sizeof (gki_cb));
 
    gki_buffer_init();
    gki_timers_init();
    alarm_service_init();
 
    gki_cb.com.OSTicks = (UINT32) times(0);
 
    pthread_mutexattr_init(&attr);
 
    p_os = &gki_cb.os;
    pthread_mutex_init(&p_os->GKI_mutex, &attr);
 
    struct sigevent sigevent;
    memset(&sigevent,0, sizeof(sigevent));
    sigevent.sigev_notify = SIGEV_THREAD;
    sigevent.sigev_notify_function = (void(*)(union sigval))bt_alarm_cb;
    sigevent.sigev_value.sival_ptr = NULL;
    if(timer_create(CLOCK_REALTIME, &sigevent, &posix_timer) == -1) {
        timer_created =false;
    }else {
        timer_created =true;
    }
}



首先将gki_cb清零,这个变量非常重要,如下:
 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
tGKI_CB   gki_cb;
 
typedef struct
{
    tGKI_OS     os;
    tGKI_COM_CB com;
} tGKI_CB;
 
typedef struct
{
    pthread_mutex_t     GKI_mutex;
    pthread_t           thread_id[GKI_MAX_TASKS];
    pthread_mutex_t     thread_evt_mutex[GKI_MAX_TASKS];
    pthread_cond_t      thread_evt_cond[GKI_MAX_TASKS];
    pthread_mutex_t     thread_timeout_mutex[GKI_MAX_TASKS];
    pthread_cond_t      thread_timeout_cond[GKI_MAX_TASKS];
} tGKI_OS;
 
typedef struct {
    UINT8  *OSStack[GKI_MAX_TASKS];        /* pointer to beginning of stack */
    UINT16  OSStackSize[GKI_MAX_TASKS];    /* stack size available to each task */
 
 
    INT8   *OSTName[GKI_MAX_TASKS];        /* name of the task */
 
    UINT8   OSRdyTbl[GKI_MAX_TASKS];       /* current state of the task */
    UINT16  OSWaitEvt[GKI_MAX_TASKS];      /* events that have to be processed by the task */
    UINT16  OSWaitForEvt[GKI_MAX_TASKS];   /* events the task is waiting for*/
 
    UINT32  OSTicks;                       /* system ticks from start */
    UINT32  OSIdleCnt;                     /* idle counter */
    INT16   OSDisableNesting;              /* counter to keep track of interrupt disable nesting */
    INT16   OSLockNesting;                 /* counter to keep track of sched lock nesting */
    INT16   OSIntNesting;                  /* counter to keep track of interrupt nesting */
 
    /* Timer related variables
    */
    INT32   OSTicksTilExp;     /* Number of ticks till next timer expires */
    INT32   OSNumOrigTicks;    /* Number of ticks between last timer expiration to the next one */
 
    INT32   OSWaitTmr   [GKI_MAX_TASKS]; /* ticks the task has to wait, for specific events */
 
    /* Buffer related variables
    */
    BUFFER_HDR_T    *OSTaskQFirst[GKI_MAX_TASKS][NUM_TASK_MBOX];/* array of pointers to the first event in the task mailbox */
    BUFFER_HDR_T    *OSTaskQLast [GKI_MAX_TASKS][NUM_TASK_MBOX];/* array of pointers to the last event in the task mailbox */
 
    /* Define the buffer pool management variables
    */
    FREE_QUEUE_T    freeq[GKI_NUM_TOTAL_BUF_POOLS];
 
    UINT16   pool_buf_size[GKI_NUM_TOTAL_BUF_POOLS];
    UINT16   pool_max_count[GKI_NUM_TOTAL_BUF_POOLS];
    UINT16   pool_additions[GKI_NUM_TOTAL_BUF_POOLS];
 
    /* Define the buffer pool start addresses
    */
    UINT8   *pool_start[GKI_NUM_TOTAL_BUF_POOLS];  /* array of pointers to the start of each buffer pool */
    UINT8   *pool_end[GKI_NUM_TOTAL_BUF_POOLS];    /* array of pointers to the end of each buffer pool */
    UINT16   pool_size[GKI_NUM_TOTAL_BUF_POOLS];   /* actual size of the buffers in a pool */
 
    /* Define the buffer pool access control variables */
    void       *p_user_mempool;                    /* User O/S memory pool */
    UINT16      pool_access_mask;                  /* Bits are set if the corresponding buffer pool is a restricted pool */
    UINT8       pool_list[GKI_NUM_TOTAL_BUF_POOLS];/* buffer pools arranged in the order of size */
    UINT8       curr_total_no_of_pools;            /* number of fixed buf pools + current number of dynamic pools */
 
    BOOLEAN     timer_nesting;                     /* flag to prevent timer interrupt nesting */
} tGKI_COM_CB;



tGKI_OS里有个GKI全局锁,一个线程池,还有关于evt和timeout的锁和条件变量。tGKI_COM_CB作为整个GKI的控制中心,里面的数据结构很复杂。


我们继续回到gki_init,在将gki_cb清零后,接下里先后初始化buffer, timer和alarm_service。然后初始化tGKI_OS中的GKI全局锁,最后创建一个定时器,当定时器到期时内核会启动一个线程执行bt_alarm_cb回调函数。


再来看gki_buffer_init是如何初始化缓冲区的,如下:
 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
void gki_buffer_init(void)
{
    UINT8   i, tt, mb;
    tGKI_COM_CB *p_cb = &gki_cb.com;
 
    /* Initialize mailboxes */
    for(tt = 0; tt < GKI_MAX_TASKS; tt++)
    {
        for(mb = 0; mb < NUM_TASK_MBOX; mb++)
        {
            p_cb->OSTaskQFirst[tt][mb] = NULL;
            p_cb->OSTaskQLast [tt][mb] = NULL;
        }
    }
 
    for(tt = 0; tt < GKI_NUM_TOTAL_BUF_POOLS; tt++)
    {
        p_cb->pool_start[tt] = NULL;
        p_cb->pool_end[tt]   = NULL;
        p_cb->pool_size[tt]  =0;
 
        p_cb->freeq[tt].p_first =0;
        p_cb->freeq[tt].p_last  =0;
        p_cb->freeq[tt].size    =0;
        p_cb->freeq[tt].total   =0;
        p_cb->freeq[tt].cur_cnt =0;
        p_cb->freeq[tt].max_cnt =0;
    }
 
    /* Use default from target.h */
    p_cb->pool_access_mask = GKI_DEF_BUFPOOL_PERM_MASK;
 
    /* add pools to the pool_list which is arranged in the order of size */
    for(i=0; i < GKI_NUM_FIXED_BUF_POOLS ; i++)
    {
        p_cb->pool_list[i] = i;
    }
 
    p_cb->curr_total_no_of_pools = GKI_NUM_FIXED_BUF_POOLS;
 
    return;
}



GKI缓冲区相关的控制数据结构都在tGKI_COM_CB中,如下:
 

?
1
2
3
4
5
6
7
8
9
10
11
12
/* Buffer related variables */
BUFFER_HDR_T    *OSTaskQFirst[GKI_MAX_TASKS][NUM_TASK_MBOX];/* array of pointers to the first event in the task mailbox */
BUFFER_HDR_T    *OSTaskQLast [GKI_MAX_TASKS][NUM_TASK_MBOX];/* array of pointers to the last event in the task mailbox */
 
typedef struct _buffer_hdr
{
    struct _buffer_hdr *p_next;  /* next buffer in the queue */
    UINT8   q_id;                /* id of the queue */
    UINT8   task_id;             /* task which allocated the buffer*/
    UINT8   status;              /* FREE, UNLINKED or QUEUED */
    UINT8   Type;
} BUFFER_HDR_T;



这里OSTaskQFirst和OSTaskQLast是个BUFFER_HDR_T的二维数组,看上去每个TASK有一个TASK_MBOX数组:
 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#define GKI_MAX_TASKS3
 
/************************************************************************
** Mailbox definitions. Each task has 4 mailboxes that are used to
** send buffers to the task.
*/
#define TASK_MBOX_0   0
#define TASK_MBOX_1   1
#define TASK_MBOX_2   2
#define TASK_MBOX_3   3
 
#define NUM_TASK_MBOX 4
 
#define GKI_NUM_TOTAL_BUF_POOLS    10



从注释上看每个task有4个mailbox,这个mailbox是用于向task发送buffer的,buffer中可能带了各种参数。


我们回到gki_buffer_init中看是如何初始化buffer的,首先将所有的mailbox都初始化为null,然后gki中一共有GKI_NUM_TOTAL_BUF_POOLS个缓冲池都需要初始化。


再来看gki_timers_init是如何初始化timers的:
 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
void gki_timers_init(void)
{
    UINT8   tt;
 
    gki_cb.com.OSTicksTilExp =0;       /* Remaining time (of OSTimeCurTimeout) before next timer expires */
    gki_cb.com.OSNumOrigTicks =0;
 
    for(tt = 0; tt < GKI_MAX_TASKS; tt++)
    {
        gki_cb.com.OSWaitTmr   [tt] =0;
    }
 
    return;
}



timers相比buffer就简单多了,只有三个变量相关,如下:

?
1
2
3
4
5
/* Timer related variables */
INT32   OSTicksTilExp;     /* Number of ticks till next timer expires */
INT32   OSNumOrigTicks;    /* Number of ticks between last timer expiration to the next one */
 
INT32   OSWaitTmr   [GKI_MAX_TASKS]; /* ticks the task has to wait, for specific events */

这里的初始化就是给他们都设为0而已。


再来看看alarm_service_init,如下:
 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
static void alarm_service_init() {
    alarm_service.ticks_scheduled =0;
    alarm_service.timer_started_us =0;
    alarm_service.timer_last_expired_us =0;
    alarm_service.wakelock = FALSE;
    raise_priority_a2dp(TASK_JAVA_ALARM);
}
 
// Alarm service structure used to pass up via JNI to the bluetooth
// app in order to create a wakeable Alarm.
typedef struct
{
    UINT32 ticks_scheduled;
    UINT64 timer_started_us;
    UINT64 timer_last_expired_us;
    bool wakelock;
} alarm_service_t;



到这里gki初始化完成了,GKI_init是被谁调用的呢?是被bte_main.c中的bte_main_boot_entry调用的,如下:
 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/******************************************************************************
**
** Function         bte_main_boot_entry
**
** Description      BTE MAIN API - Entry point for BTE chip/stack initialization
**
** Returns          None
**
******************************************************************************/
void bte_main_boot_entry(void)
{
    /* initialize OS */
    GKI_init();
 
    bte_main_in_hw_init();
 
    bte_load_conf(BTE_STACK_CONF_FILE);
    bte_load_ble_conf(BTE_BLE_STACK_CONF_FILE);
 
    pthread_mutex_init(&cleanup_lock, NULL);
}



bte_main_boot_entry又是被谁调用的呢?在btif_core.c的btif_init_bluetooth中,如下:
 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
bt_status_t btif_init_bluetooth() {
    UINT8 status;
    btif_config_init();
    bte_main_boot_entry();
 
    /* As part of the init, fetch the local BD ADDR */
    memset(&btif_local_bd_addr,0, sizeof(bt_bdaddr_t));
    btif_fetch_local_bdaddr(&btif_local_bd_addr);
 
    /* start btif task */
    status = GKI_create_task(btif_task, BTIF_TASK, BTIF_TASK_STR,
                (UINT16 *) ((UINT8 *)btif_task_stack + BTIF_TASK_STACK_SIZE),
                sizeof(btif_task_stack));
 
    if(status != GKI_SUCCESS)
        returnBT_STATUS_FAIL;
 
    returnBT_STATUS_SUCCESS;
}

而btif_init_bluetooth又是被bluetooth.c中init函数调用的,而这个Init又是被谁调用的呢?在Bluetooth.c中如下:
 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
static const bt_interface_t bluetoothInterface = {
    sizeof(bluetoothInterface),
    init,
    enable,
    disable,
    cleanup,
    get_adapter_properties,
    get_adapter_property,
    set_adapter_property,
    get_remote_device_properties,
    get_remote_device_property,
    set_remote_device_property,
    get_remote_service_record,
    get_remote_services,
    start_discovery,
    cancel_discovery,
    create_bond,
    remove_bond,
    cancel_bond,
    get_connection_state,
    pin_reply,
    ssp_reply,
    get_profile_interface,
    dut_mode_configure,
    dut_mode_send,
#ifBLE_INCLUDED == TRUE
    le_test_mode,
#else
    NULL,
#endif
    config_hci_snoop_log,
    set_os_callouts,
    read_energy_info,
};
 
const bt_interface_t* bluetooth__get_bluetooth_interface ()
{
    /* fixme -- add property to disable bt interface ? */
 
    return&bluetoothInterface;
}
 
static int open_bluetooth_stack (conststruct hw_module_t* module, charconst* name,
                                 struct hw_device_t** abstraction)
{
    UNUSED(name);
 
    bluetooth_device_t *stack = malloc(sizeof(bluetooth_device_t) );
    memset(stack,0, sizeof(bluetooth_device_t) );
    stack->common.tag = HARDWARE_DEVICE_TAG;
    stack->common.version =0;
    stack->common.module = (struct hw_module_t*)module;
    stack->common.close = close_bluetooth_stack;
    stack->get_bluetooth_interface = bluetooth__get_bluetooth_interface;
    *abstraction = (struct hw_device_t*)stack;
    return0;
}
 
 
static struct hw_module_methods_t bt_stack_module_methods = {
    .open = open_bluetooth_stack,
};
 
struct hw_module_t HAL_MODULE_INFO_SYM = {
    .tag = HARDWARE_MODULE_TAG,
    .version_major =1,
    .version_minor =0,
    .id = BT_HARDWARE_MODULE_ID,
    .name ="Bluetooth Stack",
    .author ="The Android Open Source Project",
    .methods = &bt_stack_module_methods
};



在com_android_bluetooth_btservice_AdapterService.cpp中初始化时有如下代码:
 

?
1
2
3
4
5
6
7
8
9
10
11
12
const char *id = (strcmp(value, "1")? BT_STACK_MODULE_ID : BT_STACK_TEST_MODULE_ID);
err = hw_get_module(id, (hw_module_tconst**) &module);
if (err == 0) {
    hw_device_t* abstraction;
    err = module->methods->open(module, id, &abstraction);
    if(err == 0) {
        bluetooth_module_t* btStack = (bluetooth_module_t *)abstraction;
        sBluetoothInterface = btStack->get_bluetooth_interface();
    }else {
       ALOGE("Error while opening Bluetooth library");
    }
}



这个sBluetoothInterface就是Bluetooth.c中的&bluetoothInterface,这里面有很多函数指针,当调用init时最终就会走到GKI_init。什么时候调用的呢?在initNative中,如下:
 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
static bool initNative(JNIEnv* env, jobject obj) {
    sJniAdapterServiceObj = env->NewGlobalRef(obj);
    sJniCallbacksObj = env->NewGlobalRef(env->GetObjectField(obj, sJniCallbacksField));
 
    if(sBluetoothInterface) {
        intret = sBluetoothInterface->init(&sBluetoothCallbacks);
        if(ret != BT_STATUS_SUCCESS) {
            ALOGE("Error while setting the callbacks: %d\n", ret);
            sBluetoothInterface = NULL;
            returnJNI_FALSE;
        }
        ret = sBluetoothInterface->set_os_callouts(&sBluetoothOsCallouts);
        if(ret != BT_STATUS_SUCCESS) {
            ALOGE("Error while setting Bluetooth callouts: %d\n", ret);
            sBluetoothInterface->cleanup();
            sBluetoothInterface = NULL;
            returnJNI_FALSE;
        }
 
        if( (sBluetoothSocketInterface = (btsock_interface_t *)
                  sBluetoothInterface->get_profile_interface(BT_PROFILE_SOCKETS_ID)) == NULL) {
                ALOGE("Error getting socket interface");
        }
 
        returnJNI_TRUE;
    }
    returnJNI_FALSE;
}



而这个InitNative是AdapterService.java中的native函数,如下:
 

?
1
private native boolean initNative();



该函数调用是在AdapterService的onCreate时,如下:
 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
@Override
public void onCreate() {
    super.onCreate();
    debugLog("onCreate()");
    mBinder =new AdapterServiceBinder(this);
    mAdapterProperties =new AdapterProperties(this);
    mAdapterStateMachine =  AdapterState.make(this, mAdapterProperties);
    mJniCallbacks = new JniCallbacks(mAdapterStateMachine, mAdapterProperties);
    initNative();
    mNativeAvailable=true;
    mCallbacks =new RemoteCallbackList<ibluetoothcallback>();
    //Load the name and address
    getAdapterPropertyNative(AbstractionLayer.BT_PROPERTY_BDADDR);
    getAdapterPropertyNative(AbstractionLayer.BT_PROPERTY_BDNAME);
    mAlarmManager = (AlarmManager) getSystemService(Context.ALARM_SERVICE);
    mPowerManager = (PowerManager) getSystemService(Context.POWER_SERVICE);
 
    mSdpManager = SdpManager.init(this);
    registerReceiver(mAlarmBroadcastReceiver,new IntentFilter(ACTION_ALARM_WAKEUP));
    mProfileObserver =new ProfileObserver(getApplicationContext(),this, newHandler());
    mProfileObserver.start();
}</ibluetoothcallback>



好了,GKI初始化的整个调用路径都搞清楚了,接下来看GKI_create_task是如何创建任务的,如下:
 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
UINT8 GKI_create_task (TASKPTR task_entry, UINT8 task_id, INT8 *taskname, UINT16 *stack, UINT16 stacksize)
{
    struct sched_param param;
    intpolicy, ret = 0;
    pthread_attr_t attr1;
 
    gki_cb.com.OSRdyTbl[task_id]    = TASK_READY;
    gki_cb.com.OSTName[task_id]     = taskname;
    gki_cb.com.OSWaitTmr[task_id]   =0;
    gki_cb.com.OSWaitEvt[task_id]   =0;
 
    /* Initialize mutex and condition variable objects for events and timeouts */
    pthread_condattr_t cond_attr;
    pthread_condattr_init(&cond_attr);
    pthread_condattr_setclock(&cond_attr, CLOCK_MONOTONIC);
 
    pthread_mutex_init(&gki_cb.os.thread_evt_mutex[task_id], NULL);
    pthread_cond_init (&gki_cb.os.thread_evt_cond[task_id], &cond_attr);
    pthread_mutex_init(&gki_cb.os.thread_timeout_mutex[task_id], NULL);
    pthread_cond_init (&gki_cb.os.thread_timeout_cond[task_id], NULL);
 
    /* On Android, the new tasks starts running before 'gki_cb.os.thread_id[task_id]' is initialized */
    /* Pass task_id to new task so it can initialize gki_cb.os.thread_id[task_id] for it calls GKI_wait */
    gki_pthread_info[task_id].task_id = task_id;
    gki_pthread_info[task_id].task_entry = task_entry;
    gki_pthread_info[task_id].params =0;
 
    ret = pthread_create( &gki_cb.os.thread_id[task_id],
              &attr1,
              (void*)gki_task_entry,
              &gki_pthread_info[task_id]);
 
    return(GKI_SUCCESS);
}

这里会创建一个线程执行gki_task_entry,我们看看这个线程入口函数,如下:
 

?
1
2
3
4
5
6
7
8
9
10
11
12
static void gki_task_entry(UINT32 params)
{
    gki_pthread_info_t *p_pthread_info = (gki_pthread_info_t *)params;
    gki_cb.os.thread_id[p_pthread_info->task_id] = pthread_self();
 
    prctl(PR_SET_NAME, (unsignedlong)gki_cb.com.OSTName[p_pthread_info->task_id],0, 0,0);
 
    /* Call the actual thread entry point */
    (p_pthread_info->task_entry)(p_pthread_info->params);
 
    pthread_exit(0);   /* GKI tasks have no return value */
}



这里prctl用于给线程重命名,然后关键是执行线程的task_entry函数,这个task_entry是GKI_create_task时传入的回调。


我们再来看看哪里调用过了GKI_create_task,主要是两个地方,一个是btif_core.c中的btif_init_bluetooth,另一处是bte_main.c中的bte_main_enable。我们先看btif_init_bluetooth,因为这是初始化后创建的第一个task。
 

?
1
2
3
4
/* start btif task */
status = GKI_create_task(btif_task, BTIF_TASK, BTIF_TASK_STR,
            (UINT16 *) ((UINT8 *)btif_task_stack + BTIF_TASK_STACK_SIZE),
            sizeof(btif_task_stack));

第一个参数是任务的入口函数,第二个是taskid,第三个是task名称,如下:
 

?
1
2
3
4
#define BTIF_TASK_STR        ((INT8 *)"BTIF")
#define BTU_TASK               0
#define BTIF_TASK              1
#define A2DP_MEDIA_TASK        2



看来这个btif task是个蓝牙核心线程,如下:
 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
static void btif_task(UINT32 params)
{
    UINT16   event;
    BT_HDR   *p_msg;
 
    btif_associate_evt();
 
    for(;;)
    {
        /* wait for specified events */
        event = GKI_wait(0xFFFF,0);
 
        /*
         * Wait for the trigger to init chip and stack. This trigger will
         * be received by btu_task once the UART is opened and ready
         */
        if(event == BT_EVT_TRIGGER_STACK_INIT)
        {
            #if(BLE_INCLUDED == TRUE)
            btif_dm_load_ble_local_keys();
            #endif
            BTA_EnableBluetooth(bte_dm_evt);
        }
 
        /*
         * Failed to initialize controller hardware, reset state and bring
         * down all threads
         */
        if(event == BT_EVT_HARDWARE_INIT_FAIL)
        {
            bte_main_disable();
            btif_queue_release();
            GKI_task_self_cleanup(BTIF_TASK);
            bte_main_shutdown();
            btif_dut_mode =0;
            btif_core_state = BTIF_CORE_STATE_DISABLED;
            HAL_CBACK(bt_hal_cbacks,adapter_state_changed_cb,BT_STATE_OFF);
            break;
        }
 
        if(event & EVENT_MASK(GKI_SHUTDOWN_EVT))
            break;
 
        if(event & TASK_MBOX_1_EVT_MASK)
        {
            while((p_msg = GKI_read_mbox(BTU_BTIF_MBOX)) != NULL)
            {
                switch(p_msg->event)
                {
                    caseBT_EVT_CONTEXT_SWITCH_EVT:
                        btif_context_switched(p_msg);
                        break;
                    default:
                        BTIF_TRACE_ERROR("unhandled btif event (%d)", p_msg->event & BT_EVT_MASK);
                        break;
                }
 
                GKI_freebuf(p_msg);
            }
        }
    }
 
    btif_disassociate_evt();
}



这里在一个无限for循环中用GKI_wait等待事件,当遇到某些事件时break。接下来看看bte_main.c中的bte_main_enable,如下:
 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
void bte_main_enable()
{
    /* Initialize BTE control block */
    BTE_Init();
 
    lpm_enabled = FALSE;
 
    GKI_create_task((TASKPTR)btu_task, BTU_TASK, BTE_BTU_TASK_STR,
                    (UINT16 *) ((UINT8 *)bte_btu_stack + BTE_BTU_STACK_SIZE),
                    sizeof(bte_btu_stack));
 
    bte_hci_enable();
 
    GKI_run();
}



原来BTU_TASK是在这里初始化的,看下入口函数btu_task,如下:
 

?
1
2
3
4
5
6
7
8
9
10
11
/*******************************************************************************
**
** Function         btu_task
**
** Description      This is the main task of the Bluetooth Upper Layers unit.
**                  It sits in a loop waiting for messages, and dispatches them
**                  to the appropiate handlers.
**
** Returns          should never return
**
*******************************************************************************/

BTU_API UINT32 btu_task (UINT32 param)
{
UINT16 event;
BT_HDR *p_msg;
UINT8 i;
UINT16 mask;
BOOLEAN handled;

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
<code>/* Initialize the mandatory core stack control blocks
   (BTU, BTM, L2CAP, and SDP)
 */
btu_init_core();
 
/* Initialize any optional stack components */
BTE_InitStack();
 
bta_sys_init();
 
/* Send a startup evt message to BTIF_TASK to kickstart the init procedure */
GKI_send_event(BTIF_TASK, BT_EVT_TRIGGER_STACK_INIT);
 
prctl(PR_SET_NAME, (unsignedlong)"BTU TASK",0, 0,0);
 
raise_priority_a2dp(TASK_HIGH_BTU);
 
/* Wait for, and process, events */
for (;;)
{
    event = GKI_wait (0xFFFF,0);
 
    if(event & TASK_MBOX_0_EVT_MASK)
    {
        /* Process all messages in the queue */
        while((p_msg = (BT_HDR *) GKI_read_mbox (BTU_HCI_RCV_MBOX)) != NULL)
        {
            /* Determine the input message type. */
            switch(p_msg->event & BT_EVT_MASK)
            {
            }
        }
    }
 
}
 
return(0);
</code>

}


这里省略了不少代码,可以看到BTU_TASK远比BTIF_TASK复杂,不过结构都一样,也是在一个loop里不停地GKI_wait获取event,然后处理event。从注释上看BTU是Bluetooth Upper Layers unit的意思。这里我们暂时不去看各种event的处理,只是了解整个底层GKI的架构。


我们注意到这里在进入loop之前做了一些初始化,先看btu_init_core,如下:

 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
<code>voidbtu_init_core(void)
{
    /* Initialize the mandatory core stack components */
    btm_init();
 
    l2c_init();
 
    sdp_init();
 
#ifBLE_INCLUDED == TRUE
    gatt_init();
#if(defined(SMP_INCLUDED) && SMP_INCLUDED == TRUE)
    SMP_Init();
#endif
    btm_ble_init();
#endif
}</code>

 

再往下看会调GKI_send_event(BTIF_TASK, BT_EVT_TRIGGER_STACK_INIT);向BTIF_TASK发送BT_EVT_TRIGGER_STACK_INIT这个event。我们来看GKI是如何发送消息的,如下:
 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
<code>/*******************************************************************************
**
** Function         GKI_send_event
**
** Description      This function is called by tasks to send events to other
**                  tasks. Tasks can also send events to themselves.
**
** Parameters:      task_id -  (input) The id of the task to which the event has to
**                  be sent
**                  event   -  (input) The event that has to be sent
**
**
** Returns          GKI_SUCCESS if all OK, else GKI_FAILURE
**
*******************************************************************************/
 
UINT8 GKI_send_event (UINT8 task_id, UINT16 event)
{
    if(task_id < GKI_MAX_TASKS)
    {
        /* protect OSWaitEvt[task_id] from manipulation in GKI_wait() */
        pthread_mutex_lock(&gki_cb.os.thread_evt_mutex[task_id]);
 
        /* Set the event bit */
        gki_cb.com.OSWaitEvt[task_id] |= event;
 
        pthread_cond_signal(&gki_cb.os.thread_evt_cond[task_id]);
 
        pthread_mutex_unlock(&gki_cb.os.thread_evt_mutex[task_id]);
 
        return( GKI_SUCCESS );
    }
    return(GKI_FAILURE);
}</code>



这里先给目标task的event锁锁上,然后或上该task等待的event,通知该task线程有新的event了,然后解锁返回。我们再看看GKI_wait是如何等待event的:
 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
<code>/*******************************************************************************
**
** Function         GKI_wait
**
** Description      This function is called by tasks to wait for a specific
**                  event or set of events. The task may specify the duration
**                  that it wants to wait for, or 0 if infinite.
**
** Parameters:      flag -    (input) the event or set of events to wait for
**                  timeout - (input) the duration that the task wants to wait
**                                    for the specific events (in system ticks)
**
**
** Returns          the event mask of received events or zero if timeout
**
*******************************************************************************/
UINT16 GKI_wait (UINT16 flag, UINT32 timeout)
{
    UINT16 evt;
    UINT8 rtask;
    struct timespec abstime = {0, 0};
 
    intsec;
    intnano_sec;
 
    rtask = GKI_get_taskid();
 
    gki_cb.com.OSWaitForEvt[rtask] = flag;
 
    /* protect OSWaitEvt[rtask] from modification from an other thread */
    pthread_mutex_lock(&gki_cb.os.thread_evt_mutex[rtask]);
 
    if(!(gki_cb.com.OSWaitEvt[rtask] & flag))
    {
        if(timeout)
        {
            clock_gettime(CLOCK_MONOTONIC, &abstime);
 
            /* add timeout */
            sec = timeout /1000;
            nano_sec = (timeout %1000) * NANOSEC_PER_MILLISEC;
            abstime.tv_nsec += nano_sec;
            if(abstime.tv_nsec > NSEC_PER_SEC)
            {
                abstime.tv_sec += (abstime.tv_nsec / NSEC_PER_SEC);
                abstime.tv_nsec = abstime.tv_nsec % NSEC_PER_SEC;
            }
            abstime.tv_sec += sec;
 
            pthread_cond_timedwait(&gki_cb.os.thread_evt_cond[rtask],
                    &gki_cb.os.thread_evt_mutex[rtask], &abstime);
        }
        else
        {
            pthread_cond_wait(&gki_cb.os.thread_evt_cond[rtask], &gki_cb.os.thread_evt_mutex[rtask]);
        }
 
        /* TODO: check, this is probably neither not needed depending on phtread_cond_wait() implmentation,
         e.g. it looks like it is implemented as a counter in which case multiple cond_signal
         should NOT be lost! */
 
        /* we are waking up after waiting for some events, so refresh variables
           no need to call GKI_disable() here as we know that we will have some events as we've been waking
           up after condition pending or timeout */
 
        if(gki_cb.com.OSTaskQFirst[rtask][0])
            gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_0_EVT_MASK;
        if(gki_cb.com.OSTaskQFirst[rtask][1])
            gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_1_EVT_MASK;
        if(gki_cb.com.OSTaskQFirst[rtask][2])
            gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_2_EVT_MASK;
        if(gki_cb.com.OSTaskQFirst[rtask][3])
            gki_cb.com.OSWaitEvt[rtask] |= TASK_MBOX_3_EVT_MASK;
 
        if(gki_cb.com.OSRdyTbl[rtask] == TASK_DEAD)
        {
            gki_cb.com.OSWaitEvt[rtask] =0;
            /* unlock thread_evt_mutex as pthread_cond_wait() does auto lock when cond is met */
            pthread_mutex_unlock(&gki_cb.os.thread_evt_mutex[rtask]);
            return(EVENT_MASK(GKI_SHUTDOWN_EVT));
        }
    }
 
    /* Clear the wait for event mask */
    gki_cb.com.OSWaitForEvt[rtask] =0;
 
    /* Return only those bits which user wants... */
    evt = gki_cb.com.OSWaitEvt[rtask] & flag;
 
    /* Clear only those bits which user wants... */
    gki_cb.com.OSWaitEvt[rtask] &= ~flag;
 
    /* unlock thread_evt_mutex as pthread_cond_wait() does auto lock mutex when cond is met */
    pthread_mutex_unlock(&gki_cb.os.thread_evt_mutex[rtask]);
 
    GKI_TRACE("GKI_wait %d %x %d %x done", (int)rtask, (int)flag, (int)timeout, (int)evt);
    return(evt);
}</code>



首先设置OSWaitForEvt,如果设置成0xFFFF就表示所有的事件都要关注,然后锁上thread_evt_mutex,看来这个锁是用来锁OSWaitEvt的,这个是收到的待处理的事件。如果没有事件待处理则清空OSWaitForEvt然后返回。如果有事件,如果需要超时等待,则调用pthread_cond_timedwait,否则调用pthread_cond_wait,则task会阻塞等信号。BTIF TASK和BTU TASK都是不用超时等待的。当有别的线程发event过来时会唤醒当前task,然后从OSWaitEvt中取出要处理的event。

接下来看GKI_send_msg,这和发送event有所区别,如下:
 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
<code>voidGKI_send_msg (UINT8 task_id, UINT8 mbox, void*msg)
{
    BUFFER_HDR_T    *p_hdr;
    tGKI_COM_CB *p_cb = &gki_cb.com;
 
    p_hdr = (BUFFER_HDR_T *) ((UINT8 *) msg - BUFFER_HDR_SIZE);
 
    GKI_disable();
 
    if(p_cb->OSTaskQFirst[task_id][mbox])
        p_cb->OSTaskQLast[task_id][mbox]->p_next = p_hdr;
    else
        p_cb->OSTaskQFirst[task_id][mbox] = p_hdr;
 
    p_cb->OSTaskQLast[task_id][mbox] = p_hdr;
 
    p_hdr->p_next = NULL;
    p_hdr->status = BUF_STATUS_QUEUED;
    p_hdr->task_id = task_id;
 
    GKI_enable();
 
    GKI_send_event(task_id, (UINT16)EVENT_MASK(mbox));
 
    return;
}</code>



这里每个task都有若干个mailbox,每个mailbox下都有一个buffer队列,这里其实就是发送一个buffer挂载到对应task的对应box下的buffer队列上。然后发送一个事件通知该task有新的message了。


再来看task是如何读取这些message的,在GKI_read_mbox中,如下:

 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
<code>void*GKI_read_mbox (UINT8 mbox)
{
    UINT8           task_id = GKI_get_taskid();
    void           *p_buf = NULL;
    BUFFER_HDR_T    *p_hdr;
 
    GKI_disable();
 
    if(gki_cb.com.OSTaskQFirst[task_id][mbox])
    {
        p_hdr = gki_cb.com.OSTaskQFirst[task_id][mbox];
        gki_cb.com.OSTaskQFirst[task_id][mbox] = p_hdr->p_next;
 
        p_hdr->p_next = NULL;
        p_hdr->status = BUF_STATUS_UNLINKED;
 
        p_buf = (UINT8 *)p_hdr + BUFFER_HDR_SIZE;
    }
 
    GKI_enable();
 
    return(p_buf);
}</code>

 

值得注意的是每次发送或者读message都要对GKI全局mutex上锁,完毕后还要释放锁。这里读mbox其实就是从mbox的buffer队列里取下队列头返回。

0 0
原创粉丝点击