Python_面向对象编程

来源:互联网 发布:godaddy 数据库使用 编辑:程序博客网 时间:2024/06/05 09:54

获取对象信息

使用type()

>>> type(123)<type 'int'>>>> type('str')<type 'str'>>>> type(None)<type 'NoneType'>
>>> type(123)==type(456)True>>> type('abc')==type('123')True>>> type('abc')==type(123)False

但是这种写法太麻烦,Python把每种type类型都定义好了常量,放在types模块里,使用之前,需要先导入:

>>> import types>>> type('abc')==types.StringTypeTrue>>> type(u'abc')==types.UnicodeTypeTrue>>> type([])==types.ListTypeTrue>>> type(str)==types.TypeTypeTrue

最后注意到有一种类型就叫TypeType,所有类型本身的类型就是TypeType,比如:

>>> type(int)==type(str)==types.TypeTypeTrue

使用isinstance()

对于class的继承关系来说,使用type()就很不方便。我们要判断class的类型,可以使用isinstance()函数。
如果继承关系是:

object -> Animal -> Dog -> Husky

那么,isinstance()就可以告诉我们,一个对象是否是某种类型。先创建3种类型的对象:

>>> a = Animal()>>> d = Dog()>>> h = Husky()
>>> isinstance(h, Husky)True

并且还可以判断一个变量是否是某些类型中的一种,比如下面的代码就可以判断是否是str或者unicode:

>>> isinstance('a', (str, unicode))True>>> isinstance(u'a', (str, unicode))True

使用dir()

如果要获得一个对象的所有属性和方法,可以使用dir()函数,它返回一个包含字符串的list,比如,获得一个str对象的所有属性和方法

>>> dir('ABC')['__add__', '__class__', '__contains__', '__delattr__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__getslice__', '__gt__', '__hash__', '__init__', '__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '_formatter_field_name_split', '_formatter_parser', 'capitalize', 'center', 'count', 'decode', 'encode', 'endswith', 'expandtabs', 'find', 'format', 'index', 'isalnum', 'isalpha', 'isdigit', 'islower', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']

仅仅把属性和方法列出来是不够的,配合getattr()、setattr()以及hasattr(),我们可以直接操作一个对象的状态:

>>> class MyObject(object):...     def __init__(self):...         self.x = 9...     def power(self):...         return self.x * self.x...>>> obj = MyObject()

紧接着,可以测试该对象的属性:

>>> hasattr(obj, 'x') # 有属性'x'吗?True>>> obj.x9>>> hasattr(obj, 'y') # 有属性'y'吗?False>>> setattr(obj, 'y', 19) # 设置一个属性'y'>>> hasattr(obj, 'y') # 有属性'y'吗?True>>> getattr(obj, 'y') # 获取属性'y'19>>> obj.y # 获取属性'y'19

如果试图获取不存在的属性,会抛出AttributeError的错误:

>>> getattr(obj, 'z') # 获取属性'z'Traceback (most recent call last):  File "<stdin>", line 1, in <module>AttributeError: 'MyObject' object has no attribute 'z'

可以传入一个default参数,如果属性不存在,就返回默认值:

>>> getattr(obj, 'z', 404) # 获取属性'z',如果不存在,返回默认值404404

也可以获得对象的方法:

>>> hasattr(obj, 'power') # 有属性'power'吗?True>>> getattr(obj, 'power') # 获取属性'power'<bound method MyObject.power of <__main__.MyObject object at 0x108ca35d0>>>>> fn = getattr(obj, 'power') # 获取属性'power'并赋值到变量fn>>> fn # fn指向obj.power<bound method MyObject.power of <__main__.MyObject object at 0x108ca35d0>>>>> fn() # 调用fn()与调用obj.power()是一样的81

使用slots

>>> class Student(object):...     pass

尝试给实例绑定一个属性:

>>> s = Student()>>> s.name = 'Michael' # 动态给实例绑定一个属性>>> print s.nameMichael

还可以尝试给实例绑定一个方法:

>>> def set_age(self, age): # 定义一个函数作为实例方法...     self.age = age...>>> from types import MethodType>>> s.set_age = MethodType(set_age, s, Student) # 给实例绑定一个方法>>> s.set_age(25) # 调用实例方法>>> s.age # 测试结果25

但是,给一个实例绑定的方法,对另一个实例是不起作用的:

>>> s2 = Student() # 创建新的实例>>> s2.set_age(25) # 尝试调用方法Traceback (most recent call last):  File "<stdin>", line 1, in <module>AttributeError: 'Student' object has no attribute 'set_age'

为了给所有实例都绑定方法,可以给class绑定方法:

>>> def set_score(self, score):...     self.score = score...>>> Student.set_score = MethodType(set_score, None, Student)

给class绑定方法后,所有实例均可调用:

>>> s.set_score(100)>>> s.score100>>> s2.set_score(99)>>> s2.score99

使用slots

但是,如果我们想要限制class的属性怎么办?比如,只允许对Student实例添加name和age属性。

为了达到限制的目的,Python允许在定义class的时候,定义一个特殊的slots变量,来限制该class能添加的属性:

>>> class Student(object):...     __slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称...
>>> s = Student() # 创建新的实例>>> s.name = 'Michael' # 绑定属性'name'>>> s.age = 25 # 绑定属性'age'>>> s.score = 99 # 绑定属性'score'Traceback (most recent call last):  File "<stdin>", line 1, in <module>AttributeError: 'Student' object has no attribute 'score'

使用slots要注意,slots定义的属性仅对当前类起作用,对继承的子类是不起作用的:


使用@property

有没有既能检查参数,又可以用类似属性这样简单的方式来访问类的变量呢?对于追求完美的Python程序员来说,这是必须要做到的!

还记得装饰器(decorator)可以给函数动态加上功能吗?对于类的方法,装饰器一样起作用。Python内置的@property装饰器就是负责把一个方法变成属性调用的:

class Student(object):    @property    def score(self):        return self._score    @score.setter    def score(self, value):        if not isinstance(value, int):            raise ValueError('score must be an integer!')        if value < 0 or value > 100:            raise ValueError('score must between 0 ~ 100!')        self._score = value

@property的实现比较复杂,我们先考察如何使用。把一个getter方法变成属性,只需要加上@property就可以了,此时,@property本身又创建了另一个装饰器@score.setter,负责把一个setter方法变成属性赋值,于是,我们就拥有一个可控的属性操作:

>>> s = Student()>>> s.score = 60 # OK,实际转化为s.set_score(60)>>> s.score # OK,实际转化为s.get_score()60>>> s.score = 9999Traceback (most recent call last):  ...ValueError: score must between 0 ~ 100!

注意到这个神奇的@property,我们在对实例属性操作的时候,就知道该属性很可能不是直接暴露的,而是通过getter和setter方法来实现的。

还可以定义只读属性,只定义getter方法,不定义setter方法就是一个只读属性:

class Student(object):    @property    def birth(self):        return self._birth    @birth.setter    def birth(self, value):        self._birth = value    @property    def age(self):        return 2014 - self._birth

多重继承

通过多重继承,一个子类就可以同时获得多个父类的所有功能。
Mixin

在设计类的继承关系时,通常,主线都是单一继承下来的,例如,Ostrich继承自Bird。但是,如果需要“混入”额外的功能,通过多重继承就可以实现,比如,让Ostrich除了继承自Bird外,再同时继承Runnable。这种设计通常称之为Mixin。

为了更好地看出继承关系,我们把Runnable和Flyable改为RunnableMixin和FlyableMixin。类似的,你还可以定义出肉食动物CarnivorousMixin和植食动物HerbivoresMixin,让某个动物同时拥有好几个Mixin:

class Dog(Mammal, RunnableMixin, CarnivorousMixin):    pass

Mixin的目的就是给一个类增加多个功能,这样,在设计类的时候,我们优先考虑通过多重继承来组合多个Mixin的功能,而不是设计多层次的复杂的继承关系。

Python自带的很多库也使用了Mixin。举个例子,Python自带了TCPServer和UDPServer这两类网络服务,而要同时服务多个用户就必须使用多进程或多线程模型,这两种模型由ForkingMixin和ThreadingMixin提供。通过组合,我们就可以创造出合适的服务来。


定制类

看到类似slots这种形如xxx的变量或者函数名就要注意,这些在Python中是有特殊用途的。

slots我们已经知道怎么用了,len()方法我们也知道是为了能让class作用于len()函数。

除此之外,Python的class中还有许多这样有特殊用途的函数,可以帮助我们定制类。

str

>>> class Student(object):...     def __init__(self, name):...         self.name = name...>>> print Student('Michael')<__main__.Student object at 0x109afb190>

打印出一堆<main.Student object at 0x109afb190>,不好看。

怎么才能打印得好看呢?只需要定义好str()方法,返回一个好看的字符串就可以了:

>>> class Student(object):...     def __init__(self, name):...         self.name = name...     def __str__(self):...         return 'Student object (name: %s)' % self.name...>>> print Student('Michael')Student object (name: Michael)

iter

如果一个类想被用于for … in循环,类似list或tuple那样,就必须实现一个iter()方法,该方法返回一个迭代对象,然后,Python的for循环就会不断调用该迭代对象的next()方法拿到循环的下一个值,直到遇到StopIteration错误时退出循环。

我们以斐波那契数列为例,写一个Fib类,可以作用于for循环:

class Fib(object):    def __init__(self):        self.a, self.b = 0, 1 # 初始化两个计数器a,b    def __iter__(self):        return self # 实例本身就是迭代对象,故返回自己    def next(self):        self.a, self.b = self.b, self.a + self.b # 计算下一个值        if self.a > 100000: # 退出循环的条件            raise StopIteration();        return self.a # 返回下一个值

现在,试试把Fib实例作用于for循环:

>>> for n in Fib():...     print n...11235...4636875025

getitem

Fib实例虽然能作用于for循环,看起来和list有点像,但是,把它当成list来使用还是不行,比如,取第5个元素:

>>> Fib()[5]Traceback (most recent call last):  File "<stdin>", line 1, in <module>TypeError: 'Fib' object does not support indexing

要表现得像list那样按照下标取出元素,需要实现getitem()方法:

class Fib(object):    def __getitem__(self, n):        a, b = 1, 1        for x in range(n):            a, b = b, a + b        return a
>>> f = Fib()>>> f[0]1>>> f[1]1>>> f[2]2>>> f[3]3>>> f[10]89>>> f[100]573147844013817084101

getattr

getattr()方法,动态返回一个属性

class Student(object):    def __init__(self):        self.name = 'Michael'    def __getattr__(self, attr):        if attr=='score':            return 99

元类

# metaclass是创建类,所以必须从`type`类型派生:class ListMetaclass(type):    def __new__(cls, name, bases, attrs):        attrs['add'] = lambda self, value: self.append(value)        return type.__new__(cls, name, bases, attrs)class MyList(list):    __metaclass__ = ListMetaclass # 指示使用ListMetaclass来定制类

当我们写下metaclass = ListMetaclass语句时,魔术就生效了,它指示Python解释器在创建MyList时,要通过ListMetaclass.new()来创建,在此,我们可以修改类的定义,比如,加上新的方法,然后,返回修改后的定义。

new()方法接收到的参数依次是:

1.当前准备创建的类的对象;

2.类的名字;

3.类继承的父类集合;

4.类的方法集合。

测试一下MyList是否可以调用add()方法:

>>> L = MyList()>>> L.add(1)>>> L[1]
0 0
原创粉丝点击