工作中遇到的Android内存优化问题(3)-leakcanary源码解析

来源:互联网 发布:故宫淘宝是故宫开的吗 编辑:程序博客网 时间:2024/05/29 18:32

今天我们来看一下一个内存泄漏检测神器 leakcanary(https://github.com/square/leakcanary)

首先我们来看一下leakcanary的使用说明


就这么多,只需要一行代码,太简单了,简单得都有点怀疑它了。

我们来看一下一个简单的例子,也是它官方源码中提供的一个例子,这个因为太小了我就截了个图


从例子中可以看到,AsyncTask执行了sleep操作,但是由于AsyncTask声明为了一个内部匿名类,此类持有外部类的对象,导致用户退出此Activity时,此Activity不能被gc回收,安装此例子到手机,点击START NEW ASYNCTASK,退出app,观察手机,会弹出一个内存泄漏通知如下图



很神奇吧,连泄漏的堆栈调用信息都能查到,比我们在前两篇用到的工具方便多了


leakcanary很神奇,就像魔术一样,我们很想知道它背后的运行机制,现在我们就来解析一下leakcanary的源码。首先从我们应用Application入手,因为leakcanary在使用中只有一行代码,我们就从这行代码慢慢跟踪一下源码。

public class ExampleApplication extends Application {  @Override public void onCreate() {    super.onCreate();    LeakCanary.install(this);  }}

首先我们进入install方法,install方法调用了另一个install方法

  public static RefWatcher install(Application application) {    return install(application, DisplayLeakService.class,        AndroidExcludedRefs.createAppDefaults().build());  }


  /**   * Creates a {@link RefWatcher} that reports results to the provided service, and starts watching   * activity references (on ICS+).   */  public static RefWatcher install(Application application,                                   Class<? extends AbstractAnalysisResultService> listenerServiceClass,                                   ExcludedRefs excludedRefs) {    if (isInAnalyzerProcess(application)) {      return RefWatcher.DISABLED;    }    enableDisplayLeakActivity(application);    //此Listener很重要,在后面会扮演重要角色    HeapDump.Listener heapDumpListener =            new ServiceHeapDumpListener(application, listenerServiceClass);    //从名字我们就可以看出它是监视内存泄漏对象的    RefWatcher refWatcher = androidWatcher(application, heapDumpListener, excludedRefs);    //    ActivityRefWatcher.installOnIcsPlus(application, refWatcher);    return refWatcher;  }



接着进入installOnIcsPlus方法,此方法就到了关键的地方,能解开为什么我们只用一个方法,就能监听所有的内存泄漏

  public static void installOnIcsPlus(Application application, RefWatcher refWatcher) {    if (SDK_INT < ICE_CREAM_SANDWICH) {      // If you need to support Android < ICS, override onDestroy() in your base activity.      return;    }    ActivityRefWatcher activityRefWatcher = new ActivityRefWatcher(application, refWatcher);    activityRefWatcher.watchActivities();  }


 ActivityRefWtacher提供了一个方法 watchActivitys()

  public void watchActivities() {    // Make sure you don't get installed twice.    stopWatchingActivities();    application.registerActivityLifecycleCallbacks(lifecycleCallbacks);  }

Android4.0以上的Application中提供了registerActivityLifecycleCallbacks方法,此方法从名字就可以看出是监听Activity生命周期的,我们再来看看参数lifecycleCallbacks的定义,

  private final Application.ActivityLifecycleCallbacks lifecycleCallbacks =      new Application.ActivityLifecycleCallbacks() {        @Override public void onActivityCreated(Activity activity, Bundle savedInstanceState) {        }        @Override public void onActivityStarted(Activity activity) {        }        @Override public void onActivityResumed(Activity activity) {        }        @Override public void onActivityPaused(Activity activity) {        }        @Override public void onActivityStopped(Activity activity) {        }        @Override public void onActivitySaveInstanceState(Activity activity, Bundle outState) {        }        @Override public void onActivityDestroyed(Activity activity) {          ActivityRefWatcher.this.onActivityDestroyed(activity);        }      };

看到了吧,所有Activity们只要调用了onDestroy方法,就会被回调方法onActivityDestroyed知道,然后传入 ActivityRefWatcher的方法 onActivityDestroyed中,此方法很简单

  void onActivityDestroyed(Activity activity) {    refWatcher.watch(activity);  }

refWatcher就是我们上面install方法中创建的,进入watch方法

 public void watch(Object watchedReference, String referenceName) {    checkNotNull(watchedReference, "watchedReference");    checkNotNull(referenceName, "referenceName");    if (debuggerControl.isDebuggerAttached()) {      return;    }    final long watchStartNanoTime = System.nanoTime();    //首先生成了一个id,此id是用来唯一标识这个检测对象的    String key = UUID.randomUUID().toString();    //将id存起来    retainedKeys.add(key);    //KeyWeakReference集成自 WeakReference(弱引用),WeakReference使用来跟踪这个对象的,    //弱引用大家都明白,它不会影响gc回收,构造WeakReference时,可以传入一个ReferenceQueue,    //这个ReferenceQueue的主要作用是当对象不可达时也就是可以被gc回收时,对象所对应的WeakReference就会被放入    //ReferenceQueue中,只要检测ReferenceQueue是否有我们的对象的WeakReference,就可以判断对象是否可能泄漏    final KeyedWeakReference reference =        new KeyedWeakReference(watchedReference, key, referenceName, queue);    watchExecutor.execute(new Runnable() {      @Override public void run() {        //此方法就是为了确认对象是否可回收        ensureGone(reference, watchStartNanoTime);      }    });  }

进入ensureGone方法

void ensureGone(KeyedWeakReference reference, long watchStartNanoTime) {    long gcStartNanoTime = System.nanoTime();    long watchDurationMs = NANOSECONDS.toMillis(gcStartNanoTime - watchStartNanoTime);    //此方法是循环ReferenceQueue,如果对象的ReferenceQueue在里面,就从retainedKeys中移除对象的key,    //因为此对象已经可回收,是安全的    removeWeaklyReachableReferences();    //判断我们要检测的reference是否还在retainedKeys中,如果不在说明已经被移除了,也就是可以被gc回收了    if (gone(reference) || debuggerControl.isDebuggerAttached()) {      return;    }    //执行垃圾回收,但是只是建议,并不是一定会执行    gcTrigger.runGc();    //再次从retainedKeys移除安全的key    removeWeaklyReachableReferences();    //如果此对象的WeakReference还是不能被回收,那么此对象就有可能泄漏了,只是可能,因为gc在上一步可能没有运行    if (!gone(reference)) {      long startDumpHeap = System.nanoTime();      long gcDurationMs = NANOSECONDS.toMillis(startDumpHeap - gcStartNanoTime);      //此方法获得内存Heap的hprof文件,LeakCanary之所以这么好用,主要是在这里,它分析了hprof文件,来确认内存泄漏,      //我们在上一篇也分析过hprof文件,原来LeakCanary也是分析这个文件,只是不需要人工分析了,LeakCanary用了一个自己      //的开源hprof分析库haha(https://github.com/square/haha)此库是基于google的perflib.      File heapDumpFile = heapDumper.dumpHeap();      if (heapDumpFile == HeapDumper.NO_DUMP) {        // Could not dump the heap, abort.        return;      }      long heapDumpDurationMs = NANOSECONDS.toMillis(System.nanoTime() - startDumpHeap);      //heapdumpListener主要就是启动服务分析hprof文件      heapdumpListener.analyze(          new HeapDump(heapDumpFile, reference.key, reference.name, excludedRefs, watchDurationMs,              gcDurationMs, heapDumpDurationMs));    }  }

heapdumpListener在前面创建的时候是一个ServiceHeapDumpListener对象,进入此对象的analyze方法

  @Override public void analyze(HeapDump heapDump) {    checkNotNull(heapDump, "heapDump");    HeapAnalyzerService.runAnalysis(context, heapDump, listenerServiceClass);  }

  public static void runAnalysis(Context context, HeapDump heapDump,      Class<? extends AbstractAnalysisResultService> listenerServiceClass) {    Intent intent = new Intent(context, HeapAnalyzerService.class);    intent.putExtra(LISTENER_CLASS_EXTRA, listenerServiceClass.getName());    intent.putExtra(HEAPDUMP_EXTRA, heapDump);    context.startService(intent);  }

启动服务分析hprof文件,接着我们来看看这个服务

  @Override protected void onHandleIntent(Intent intent) {    if (intent == null) {      CanaryLog.d("HeapAnalyzerService received a null intent, ignoring.");      return;    }    String listenerClassName = intent.getStringExtra(LISTENER_CLASS_EXTRA);    HeapDump heapDump = (HeapDump) intent.getSerializableExtra(HEAPDUMP_EXTRA);    //分析hprof的核心类    HeapAnalyzer heapAnalyzer = new HeapAnalyzer(heapDump.excludedRefs);    //检查我们的对象是否内存泄漏    AnalysisResult result = heapAnalyzer.checkForLeak(heapDump.heapDumpFile, heapDump.referenceKey);    AbstractAnalysisResultService.sendResultToListener(this, listenerClassName, heapDump, result);  }
进入checkForLeak方法
 public AnalysisResult checkForLeak(File heapDumpFile, String referenceKey) {    long analysisStartNanoTime = System.nanoTime();    if (!heapDumpFile.exists()) {      Exception exception = new IllegalArgumentException("File does not exist: " + heapDumpFile);      return failure(exception, since(analysisStartNanoTime));    }    try {      HprofBuffer buffer = new MemoryMappedFileBuffer(heapDumpFile);      //解析器解析文件      HprofParser parser = new HprofParser(buffer);      //解析过程,是基于google的perflib库,根据hprof的格式进行解析,这里就不展开看了      Snapshot snapshot = parser.parse();      //分析结果进行去重      deduplicateGcRoots(snapshot);      //此方法就是根据我们需要检测的类的key,查询解析结果中是否有我们的对象,获取解析结果中我们检测的对象      Instance leakingRef = findLeakingReference(referenceKey, snapshot);      //此对象不存在表示已经被gc清除了,不存在泄露因此返回无泄漏      // False alarm, weak reference was cleared in between key check and heap dump.      if (leakingRef == null) {        return noLeak(since(analysisStartNanoTime));      }      //此对象存在也不能也不能确认它内存泄漏了,要检测此对象的gc root      return findLeakTrace(analysisStartNanoTime, snapshot, leakingRef);    } catch (Throwable e) {      return failure(e, since(analysisStartNanoTime));    }  }

我们重点看一下findLeakingReference方法

  private Instance findLeakingReference(String key, Snapshot snapshot) {    //因为需要检测的类都构造了一个KeyedWeakReference,因此先找到KeyedWeakReference,就可以找到我们的对象    ClassObj refClass = snapshot.findClass(KeyedWeakReference.class.getName());    List<String> keysFound = new ArrayList<>();    //循环所有KeyedWeakReference实例    for (Instance instance : refClass.getInstancesList()) {      List<ClassInstance.FieldValue> values = classInstanceValues(instance);      //找到KeyedWeakReference里面的key值,此值在我们前面传入的对象唯一标示      String keyCandidate = asString(fieldValue(values, "key"));      //当key值相等时就表示是我们的检测对象      if (keyCandidate.equals(key)) {        return fieldValue(values, "referent");      }      keysFound.add(keyCandidate);    }    throw new IllegalStateException(        "Could not find weak reference with key " + key + " in " + keysFound);  }
最后一步,也是最核心的方法,确认是否内存泄漏,和我们手动分析hprof的方法几乎相同
  private AnalysisResult findLeakTrace(long analysisStartNanoTime, Snapshot snapshot,      Instance leakingRef) {    //这两行代码是判断内存泄露的关键,我们在上篇中分析hprof文件,判断内存泄漏    //判断的依据是展开调用到gc root,所谓gc root,就是不能被gc回收的对象,    //gc root有很多类型,我们只要关注两种类型1.此对象是静态 2.此对象被其他线程使用,并且其他线程正在运行,没有结束    //pathFinder.findPath方法中也就是判断这两种情况    ShortestPathFinder pathFinder = new ShortestPathFinder(excludedRefs);    ShortestPathFinder.Result result = pathFinder.findPath(snapshot, leakingRef);    // 找不到引起内存泄漏的gc root,就表示此对象未泄漏    // False alarm, no strong reference path to GC Roots.    if (result.leakingNode == null) {      return noLeak(since(analysisStartNanoTime));    }    //生成泄漏的调用栈,为了在通知栏中显示    LeakTrace leakTrace = buildLeakTrace(result.leakingNode);    String className = leakingRef.getClassObj().getClassName();    // Side effect: computes retained size.    snapshot.computeDominators();    Instance leakingInstance = result.leakingNode.instance;    //计算泄漏的空间大小    long retainedSize = leakingInstance.getTotalRetainedSize();    retainedSize += computeIgnoredBitmapRetainedSize(snapshot, leakingInstance);    return leakDetected(result.excludingKnownLeaks, className, leakTrace, retainedSize,        since(analysisStartNanoTime));  }

核心的代码我们已经看完了,是不是有一种豁然开朗的感觉,这就是好的软件,将重复繁琐的工作封装起来,只给我们留下一个两行的使用说明









0 0
原创粉丝点击