网络相关的术语

来源:互联网 发布:手机测大气压软件 编辑:程序博客网 时间:2024/05/16 00:40

1、一些参数

(*)MAC

        MAC(即Medium/MediaAccess Control, 介质访问控制),是数据链路层的一部分。MAC地址是烧录在NetworkInterfaceCard(即网卡,简称NIC)里的,它也叫硬件地址,是由48位(即bit,一字节为8位,即1byte=8bits)16进制的数字组成。其中0-23位叫做组织唯一标志符(organizationally unique,简称OUI),是识别LAN(局域网)节点的标识(在有些抓包工具抓包的时候会将前三个字节映射成某种组织名称的字符,也可以选择不显示这种映射)。24-47位是由厂家自己分配。

(*)SSID

        表示一个子网的名字,无线路由通过这个名字可以为其它设备标识这个无线路由的子网。设备进行扫描的时候,就会将相应SSID扫描到,然后就能够选择相应的SSID连接到相应的无线网络(当然不扫描,理论上也可以直接指定自己事先已经知道的ssid进行连接)。SSID可以和其它的重复,这样扫描的时候会看到两个同样SSID的无线网络,其实这一般用于将一个无线网络扩大的情况(毕竟无线路由器无线信号的覆盖范围是有线的):当想要扩大一个无线网络(即SSID固定)的范围的时候,可以给多个路由设置相同的SSID来达到这个目的。(这也是漫游的原理,漫游的时候,我们可以在远方或者本地都能够打电话,也就是访问移动通信网络)。

        SSID和BSSID不一定一一对应,一个BSSID在不同的Channel上面可能会对应到多个SSID,但是它们在一个Channel是一一对应的;另外,漫游的时候,虽然SSID不变,但是BSSID一定是会变化的。我们经常可以看到实际数据包中的AP的MAC地址和BSSID只差几位,其实实际设备的MAC地址可能只有一个,和BSSID没什么对应关系。在一个包含了路由功能和AP功能的无线路由器(Fat AP)上面,很可能是:路由器有两个MAC地址,一个用于外网(WAN),一个用于内网(WLAN和LAN),一般路由器上面或者配置路由器的网页上面只标注外网的MAC地址;内网的MAC地址和外网MAC地址一般只有几位不同(甚至连续,也有些相差很多的例外)。

 

(*)Band(频率范围)

        一般ap可以支持5g或2.4g两个频率范围段的无线信号。如果两者同时可以设置,而不是互斥那么,这个路由器还能够同时支持两种频段(频段即Band),这相当于这个ap可建立两个无线网络,它们采用不同的频段(这类似收音机在长波范围内收音和短波范围内收音)。

 

(*)Channel(信道)

        Channel是对频段的进一步划分(将5G或者2.4G的频段范围再划分为几个小的频段,每个频段称作一个Channel),有”5.18GHZ“,“Auto(DFS)”等等,处于不同传输信道上面的数据,如果信道覆盖范围没有重叠,那么不会相互干扰。对于信道的使用,在国际上有所规定。其中有些信道是无需授权即可直接使用的(究竟是那个频段的那个信道,依照各个国家而不同),无需授权使用的意思是,传输数据的时候(无论以哪种无线方式),可以让设备收发的功率导致传输时的数据进入该信道的频率并在该信道所在频段宽度内进行传输;授权的使用的意思是,不允许传输时使用授权信道进行,否则会违反规定,并且干扰该信道上其他数据的传输。另外,除了wifi,微波、红外线、蓝牙(使用802.15协议)的工作频段也都有在2.4gHZ范围内的,所以,它们传输的时候会对wifi传输造成干扰,因为两者在不同的协议下进行通信,所以互相将对方传输的信号识别为噪声。有时候配置AP的时候,Channel中有一个类似“Auto”的选项值,这表示打开AP的时候,AP自己Scan周围的环境,选择一个干扰最小的Channel来进行通信,当选择好了一个Channel的时候,一般就不会改变了。

 

(*)Channel Width(信道宽度)

        这里的Channel Width是信道的带宽,有”20M HZ“、”40M HZ“等,它表示一个Channel片段的宽度(假设5g的频段宽度总共为100M,平均划分为互不干扰的10个Channel,那么每个Channel的Channel Width就为100M/10=10M,实际Channel并不一定是完全不重叠的)。这个参数可能依赖于一些其它的选项,例如不是802.11N的协议,就可能不会有40M HZ的Channel Width(N模式有一个特点就是可以把两个Channel合并,通过提高ChannelWidth来提高吞吐量)。例如选择了"20M HZ"这个Channel Width之后,后面再选择一个“5.18GHZ”的Channel,则表示以5.18GHZ为中心的前"10M HZ"以及其后面的"10M HZ"频带范围被占用。

        至此可知,配置无线AP的时候,如果屋子里面有很多的AP(也就是无线路由接入点)的话,仔细设置它们的Channel Width和Channel可以保证它们相互之间的干扰(类似收音机里面的串台)尽可能小。当然,如果相互干扰了,那么Net Mode所指定的协议也会有相应的处理方式让他们之间进行协调(例如让谁先通信谁等一会再通信之类的),但是这样网络的性能就不如没有干扰的时候好了。

 

(*)Wireless Security(无线网络的安全性)

        这里主要涉及WEP、WPA、WPA2和RC4、TKIP、AES。

        IEEE 802.11 所制定的是技术性标准 ,Wi-Fi 联盟所制定的是商业化标准 , 而 Wi-Fi 所制定的商业化标准基本上也都符合 IEEE 所制定的技术性标准。WEP 是1999年9月通过的 IEEE 802.11 标准的一部分;WPA(Wi-Fi Protected Access) 事实上就是由 Wi-Fi 联盟所制定的安全性标准 , 这个商业化标准存在的目的就是为了要支持 IEEE 802.11i 这个以技术为导向的安全性标准;而 WPA2 其实就是 WPA 的第二个版本。直观点说,WEP是较老的认证方法它有好几个弱点,因此在2003年被WPA淘汰,WPA又在2004年由完整的 IEEE 802.11i 标准(又称为 WPA2)所取代。

        WEP(Wired Equivalent Privacy),采用名为RC4的RSA加密技术;WPA(Wi-Fi Protected Access) ,采用新的TKIP算法,TKIP算法保留了RC4所以也有其弱点,但是这个时候更好的CCMP还没完成,所以先在WPA上用TKIP技术;WPA2是WPA的第2个版本,采用CCMP加密协定(在有些路由器等设备上设定加密协定或者加密算法的时候,可能会用类似AES之类的字眼替代CCMP)。所以WPA2+AES是安全性最强的。

        另外,在有些无线网路设备的参数中会看到像 WPA-Enterprise / WPA2-Enterprise 以及 WPA-Personal / WPA2-Personal 的字眼 , 其实WPA-Enterprise / WPA2-Enterprise 就是 WPA / WPA2 ; WPA-Personal / WPA2-Personal 其实就是 WPA-PSK / WPA2-PSK, 也就是以 ”pre-share key” 或 ” passphrase” 的验证 (authentication) 模式来代替 IEEE 802.1X/EAP 的验证模式 ,PSK 模式下不须使用验证服务器 ( 例如 RADIUS Server), 所以特别适合家用或 SOHO 的使用者。

        还有,wep是旧的加密方式,工作于802.11B/G模式下而802.11N草案并不支持此加密方式,所以如果802.11N的设备采用wep加密方式后,它也只会工作在802.11b/g模式下,N的性能发挥不出来。

        实际中,在有些路由器上面,设置的时候,可能不是严格按照这个规定来设置的(例如设定了采用WPA方式,还可以选择AES),但是大体一样。

 

(*)Region(区域)

        一般在无线网络中的AP上都有一个参数,表明它是处于哪个Region(地区)。Station根据AP中设置的Region调整其相应的发射功率以遵守该地区的规定。AP的调整过程一般都是手动设定,设置好AP所处的Region之后,这些信息就会在AP发送的Beacon帧(后面会说到)中包含了;通过这个AP连接到无线网络上的Station,从Beacon帧中了解到这些Region信息,并且根据这些信息中的规定和AP进行通信。如果AP开始设置错了,那么Station和AP通信的时候,采用的将会是不符合Region规定的频段,可能会对该Region中的其它传输网络造成干扰,这应当是“非法”的。

 

(*)Transmission Rate

        设置传输速率。这里采用不同的无线网络传输协议(802.11a,802.11b,802.11g等),那么可以设置的速率范围有所不同,这里的速度是指理论的速度,实际中,由于各种干扰因素,传输的速率可能会比设置的小。

        一般而言,在无线网络中,对于某种协议的性能进行描述时,我们需要注意的是,描述时提到的传输速率(Datarate)和吞吐量(Throughput)是不同的。Datarate是理论上面最大数据传输速率,而Throughput是数据的实际最大吞吐量。因为厂家以及传输时所使用的协议等各种因素造成的开销,会导致实际吞吐量比理论吞吐量要小,一般实际最大吞吐为理论最大的50%左右(一个不太准确但是相对直观的估计:在网络中,高清视频所需的Throughput也就30mbps左右,网络上一般的视频也就4mbps左右)。

 

(*)Qos(质量保证)

        无线网络中的QOS是质量保证,大致的意思是,传输数据的时候,考虑各种因素(例如收费策略,所处地区等),以一定的优先级来保证传输的特定要求(一般就是速度),如果带宽足够的话,QOS反而不需要了。

 

(*)RTS Threshold / CTS Protection Mode:

        这里的RTS是Request-To-Send的简写,CTS是Clear-To-Send的简写。设置好RTS的阈值之后,如果超过这个阈值就会在发送信息之前先发送RTS,以减少干扰,相应的CTS会回应之前的RTS。一般都是AP发送CTS数据,而Station发送RTS数据。

        这里对RTS和CTS做一个简单解释:假设在同一个AP所覆盖的无线网络范围内的两个Station A和B,它们之间可能会因为距离的原因互相不可见(例如它们在AP网络范围的两端,而这两端的距离大于两者的信号覆盖范围),但是AP却知道它们是在自己的范围内。当一个A想要在AP的网络中进行通信的时候,必定要经过AP转发它的信息,由于A不知道B的存在,所以如果同时B也通过AP进行网络通信,那么会出现AP同时收到A、B两个Station的通信请求,而这在无线网络中是不允许的(无线网络中,同一时刻不能有多个人传输数据)。在这种情况下,B和A互相干扰了对方的通信,但是却互相不可见(不可见的节点互相被称作隐藏节点)。如果在一个网络中,这样的隐藏节点很多,那么势必会影响网络的性能(因为数据一旦发送失败,就要重传,隐藏节点会导致重传的机率增大)。这个时候,可采用RTS和CTS机制。即:在A想要通信的时候,先广播发送RTS给AP,告诉AP“它想要通信”,同时接受到RTS的别的Station(它们对发送RTS的Station而言可见)会知道A将要发送数据,于是它们不会发送数据以免干扰A;AP收到RTS之后,会广播发送CTS,告诉所有在AP范围内的Station(包括对A而言的隐藏节点B)”A将要通信(同时也相当于告诉A,A可以无干扰的发送信息了)”,这样对A而言的隐藏节点B也知道有一个A的存在并且要发送信息了,于是B就不会干扰A了。 这里,A和B两者可以在不同的网络上,也就是说,不同网络的工作站之间也可以通过RTS/CTS来清除相互的干扰。

 

(*)Beacon Interval:

        表示无线路由定期广播其SSID的时间间隔。这个一般不会特别设置,就采用默认值即可。如果不广播了,那么Station端扫描的时候可能会发现不定期广播的AP对应的SSID的网络不见了,所以可能会断开连接。这里定期广播,表示AP会定时向其范围内广播SSID的信息,以表示AP的存在,这样Station进入一个区域之后,就能够通过扫描知道这个区域是否有AP的存在。当然,除了AP广播SSID以告知其无线网络存在之外,Station也可主动广播探寻包,在其能够覆盖的范围内询问是否有AP存在(即我们通常所说的扫描寻找接入点)。

 

(*)DTIM Interval:

        DTIM/TIM表示告诉Station,AP在为Station做package buffer(例如Station睡眠的时候)的缓存时间。为了节省电池使用时间,处于无线网络中的Station可能会在一定时间之后自动进入休眠状态。这个时候,AP会为这个Station缓存发送给它的数据,而处于休眠状态的Station只会在一定时间间隔内给AP发送一个数据帧,以确认是否有发送给自己的数据存在。例如,当我们在主机上ping另外一台睡眠的机器的时候,收到另外一台机器响应的时间,要比它不睡眠的时候响应的时间长很多。

 

(*)Fragmentation Threshold:

        表示一个package的分片阈值。我们可以设置分片大小,当发送的数据包超过这个阈值之后,802.11协议会自动对这个数据包进行分割。如果设置的这个分片值越小,那么整个数据包越容易传输成功(因为如果出错,那么只需要传送一个片段而不是整个包,无线wifi网络中数据传输时出错的概率比有线的以太网要大的多的多),当然开销也越大(因为需要额外的信息标记每个分片,以及各个分片传输成功之后涉及到的重组问题)。

 

2、抓包

        一般来说,我们的机器上面的软件抓取无线网卡上面的包的时候,其实这些包的目标地址都是这个机器的无线网卡,因为不是发给这个机器无线网卡的包都被网卡过滤了。所以如果我们想要抓取所处无线网络环境下所有的包的时候,需要给机器配备一种特殊的设备(sniffer就是嗅探器),然后再通过抓包工具抓取并分析。有一个硬件设备叫做AirPcap,就是做这个用的,大有几百到上千美金,它可以同时做为嗅探器或者无线网卡使用,不过做为嗅探器的时候,会抓取所有经过它的包。这个工具目前只有Windows上面的驱动,所以使用这个工具,只能在Windows上面,配合Wireshark抓包软件进行抓包。

        这里假设采用AirPcap嗅探,Wireshark软件抓包(其它抓包软件,例如linux下面的tcpdump等分析类似)。不用图形方式详细展示具体的抓包过程以及分析方法了,主要说一下抓包(这里的包实际主要指的是网络层以下的包,更常见的称呼应该是数据帧)时候需要注意的问题。

        (*)Wireshark展示包的时候,大致都是按照协议规定的字段展示,也些地方按照它自己特定的方式展示。因为这里着重讲述一些抓包时注意的基本原理上面的东西,所以不会对此进行过多阐述。大致就是:Wireshark软件中,对包展示的时候,按照协议规定的字段分别用Header和Body两个部分展示;另外,在Header之前还有两个部分是Wireshark为方便用户而展示的包的大小、时间等全局信息(例如见过表示这个包在B和G mode中的Channel 1时,用"BG1"表示)。所以,其实我们分析的时候,实际应该按照后面的Header和Body两个部分进行。 后面将基于以上所述,进行进一步的讲解。

        (*)抓包的时候,需要首先确认这个包是否是完整、正确的包。只要是校验位(checksum)不对的,就是错误的包,也无法确定接收的时候那里出了差错,所以这个包是应该忽略的,几乎没有分析的价值。另外,抓包的时候,由于干扰等原因,抓取的内容可能不是在实际传输所处的Channel上的包(例如在Channel 1上面嗅探,却嗅探到了Channel 2上的包)。

        (*)抓取授权阶段的包,需要注意实际的授权是在后面进行的。Authentication的时候,开始阶段实际是Open的(即无授权),也就是说,开始实际已经建立好了连接,所以我们在抓包的时候,开始看到的一般都是通过验证,但是在后面紧接着采用了类似802.11x等安全加强的协议,来进行再次鉴权认证,如果这里无法通过则立即将已经建立的Association断开。这样的机制,是因为原来的802.11没有充分考虑安全才会这样的,这样也兼容了以前的802.11。

        (*)抓取的包的数据,要注意这个包是否是被加过密的。根据协议标准的描述,包中如果有dataprotected字段,则表示这个数据本身是被加了密的,不知道这个数据具体是什么,当然,如果有密码,wireshark也有一个可以按照这个密码解密的工具,有时候不好用。这里所说的数据加密和网络的加密不一样,可能访问网络本身是需要密码(网络是security的),而数据本身没有crpted(加密)。对于一个加了密的数据包,我们一般看不出来这个包到底是做什么用的或者什么类型的等等。

        (*)抓包的时候,要注意包中指示的源和目的地址以及包的序号。在无线网络中通信的时候,我们抓包的时候可能会看到被抓取的包对应AP的MAC地址是不存在的,其实抓包时AP的MAC是BSSID,它和实际标注的MAC地址不一定一样(但是一般都差不多,也就是之后最后面的几位不一样)。有时候,我们看到抓取的包中的MAC地址有许多只相差几位,那么可能它们都属于一个设备(因为虽然设备可能只标注了一个网卡的MAC地址,但是它却“虚拟”出或者实际有多个MAC地址),所以当我们看到包中对应两个AP的MAC地址几乎一样的时候,一般来说,这两个MAC地址很可能就是一个设备的。还有在抓包的时候,一个地址上面的包的sequence(序号)是连续的,除非丢包了导致重复或者缺失。如果一个设备虚拟出来两个地址,那么也可能由于没有经过什么处理,导致这两个地址上面的包共同起来是连续的(如前所述,这两个地址和MAC很接近,应该是BSSID)。

        (*)抓取的数据帧如果是广播帧则不需要确认(ACK),如果是单播帧,则一般需要确认(ACK)。例如,Probe帧是广播帧,所以它无对应的ACK确认帧,对Probe的回复则叫做Probe Response;注意ACK帧本身用于确认,是单播的,但是它本身却不需要再被确认了。从包中的目的MAC地址中,可以看出这个包是广播/多播帧还是单播帧。MAC第一个字节的第一个位是1,表示组播,前两位是1表示广播,第一个字节第一个位是0表示单播。这里注意,MAC不是值,而是一个Pattern,所以没有Endian之说,也没有那个位高,那个MAC大之说。例如:“a8:27:26:....:b7”,这里第一个字节就是a8(10101000),其第一个字节的第一位就是8的最“右”位,即“0”,所以它的第一个字节的第一个位是0,是一个单播地址。其实,这里涉及到大端小端问题,后面也会讲到,总之,以太网线路上按“Big Endian”字节序传送报文(也就是最高字节先传送),而比特序是”Little Endian”(也就是字节内最低位先传送)所以,一个十六进制表示法表示的MAC地址01-80-C2-00-00-00,传送时的bit顺序就是:1000 0000 0000 0001 0100 0011 0000 0000 0000 0000 0000 0000。

        (*)使用Wire Shark在抓包或者显示包的时候,都可以设置过滤器(filter)。抓包时候设置的过滤器叫做capture filter,它是用BPF(berkerley package filter)这个比较通用的语言来描述(注意这不是Wireshark专用的filter语言,而是一个通用的语言)。但是抓包期间的过滤,有时候不准,所以我们一般先将所有的包抓取下来,然后用WireShark中显示的过滤器(即view filter)来显示我们关注的包,这里我们可以用macro来定义比较复杂的显示过滤条件。保存的时候,可以用按照显示过滤还是抓取过滤的方式保存内容。

        (*)尽量不要抓取Channel Width为40MHZ的Channel上的帧。我们还需要注意的是,使用Sniffer抓取无线网络包的时候,AirPcap无法正常抓取40MHZ Channel Width的包,或者说对抓取这个Channel Width上面的包支持不好。如果非要抓取40MHZ Channel Width的包,那么就在40或者36号Channel上面进行抓取,并在Wireshark上面设置“channel=36,offset+1”(平时offset都是0),这样能够抓取 Channel Width为40MHZ的包(但是,其他Channel上面的40mHZ的包还是无法抓取),这是由AirPcap内部的芯片固件的问题决定的(估计broad com芯片公司也不愿花过多的精力来支持这个很少有人用的抓包工具的这个功能)。

        另外,假设一个无线工作站是基于Android系统的(例如智能手机或者平板电子书)那么我们可以利用“wpa_cli status”命令来可以查看当前设备的连接的SSID,BSSID,MAC,IP等信息,(这里“cli”=“command line interface”)。 还有更“复杂”的命令“wc”和“wl”,其中wc是比较上层的命令,wl是下层的命令(是基于芯片是否支持的,例如wl在broadcom芯片上支持,但是在ti上面就没有了)。

0 0