偏序集-Dilworth定理

来源:互联网 发布:java编程思想 在线 编辑:程序博客网 时间:2024/05/16 08:56

偏序的概念:

设A是一个非空集,P是A上的一个关系,若关系P是自反的、反对称的、和传递的,则称P是集合A上的偏序关系。
即P适合下列条件:
(1)对任意的a∈A,(a,a)∈P;
(2)若(a,b)∈P且(b,a)∈P,则a=b;
(3)若(a,b)∈P,(b,c)∈P,则(a,c)∈P,则称P是A上的一个偏序关系。带偏序关系的集合A称为偏序集或半序集。
若P是A上的一个偏序关系,我们用a≤b来表示(a,b)∈P。

比方说:(A,≤)是偏序集,A={1,2,3},偏序≤在A上的大于等于关系。则有:≤={<3,3>,<3,2>,<3,1>,<2,2>,<2,1>,<1,1>},则有3≤2,2≤2,2≤1….
举如下例子说明偏序关系:
1、实数集上的小于等于关系是一个偏序关系。
2、设S是集合,P(S)是S的所有子集构成的集合,定义P(S)中两个元素A≤B当且仅当A是B的子集,即A包含于B,则P(S)在这个关系下成为偏序集。
3、设N是正整数集,定义m≤n当且仅当m能整除n,不难验证这是一个偏序关系。注意它不同于N上的自然序关系。

在Partially order set(偏序集)有一个非常NX的定理叫Dilworth Theorem。偏序集的定义是

偏序是在集合X上的二元关系≤(这只是个抽象符号,不是“小于或等于”),它满足自反性、反对称性和传递性。即,对于X中的任意元素a,b和c,有:
自反性:a≤a;
反对称性:如果a≤b且b≤a,则有a=b;
传递性:如果a≤b且b≤c,则a≤c 。

带有偏序关系的集合称为偏序集。
令(X,≤)是一个偏序集,对于集合中的两个元素a、b,如果有a≤b或者b≤a,则称a和b是可比的,否则a和b不可比。

例:(A,≤)是偏序集,其中A={1,2,3,4,5},其中≤是整除关系,那么对任意的x∈p都有1≤x,所以1和1,2,3,4,5都是可比的,但是2不能整除3,且3不能整除2,所以2和3是不可比的。
在X中,对于元素a,如果任意元素b,由b≤a得出b=a,则称a为极小元。

一个反链A是X的一个子集,它的任意两个元素都不能进行比较。
一个链C是X的一个子集,它的任意两个元素都可比。

下面是两个重要定理:
定理1 令(X,≤)是一个有限偏序集,并令r是其最大链的大小。则X可以被划分成r个但不能再少的反链。
其对偶定理称为Dilworth定理:
定理2 令(X,≤)是一个有限偏序集,并令m是反链的最大的大小。则X可以被划分成m个但不能再少的链。

证明:设p为最少反链个数
(1)先证明X不能划分成小于r个反链。由于r是最大链C的大小,C中任两个元素都可比,因此C中任两个元素都不能属于同一反链。所以p>=r。
(2)设X1=X,A1是X1中的极小元的集合。从X1中删除A1得到X2。注意到对于X2中任意元素a2,必存在X1中的元素a1,使得a1<=a2。令A2是X2中极小元的集合,从X2中删除A2得到X3……最终,会有一个Xk非空而X(k+1)为空。于是A1,A2,…,Ak就是X的反链的划分,同时存在链a1<=a2<=…<=ak,其中ai在Ai内。由于r是最长链大小,因此r>=k。由于X被划分成了k个反链,因此r>=k>=p。因此r=p,定理1得证。

搞清楚了反链和链的定义,就能够很好的从Hasse Diagram中得到理解。链就是从纵向的角度看 Hasse Diagram ,反链是从横向的角度看Hasse Diagram。

定理一,就是至少有r行构成反链关系。

定理二,就是至少有m列构成链关系。

题目总结:hdu 3335,poj 1065,1548,3636,nyist 255

题目链接:poj 2065http://poj.org/problem?id=1065

分析:有n个木棒,分别不同的长度和不同的重量,一个机器需要处理这些木棒,如果第i+1个木棒的重量和长度都>=第i个处理的木棒,那么将不会耗费时间,否则需要增加一个单位的时间,问最少需要多少时间处理完(包括机器启动的时间)。

先按照重量从小到大排序,当重量相等是再按长度从小到大排序,这个时候≤指的是xi+1>=xi&&yi+1>=yi,可以设num=0,因为排序后始终是xi+1>=xi,所以当yi+1< yi的时候就num++;结果返回num即可.

    #include<iostream>      #include<cstring>      #include<algorithm>      using namespace std;      int B[5005];      struct node      {   int len,wg;      };      int comp(node A,node B)      {   if(A.wg!=B.wg) return A.wg<B.wg;          if(A.wg==B.wg&&A.len!=B.len) return A.len<B.len;      }      int main()      {   int i,n,k,j;          cin>>k;          node a[5005];          while(k--)          {  cin>>n;             int num=0;             for(i=0;i<n;i++)                cin>>a[i].len>>a[i].wg;             sort(a,a+n,comp);             for(i=0;i<n;i++)             {  int flag=0;                for(j=0;j<num;j++)                  if(a[i].len>=B[j])                  {  flag=1;                     B[j]=a[i].len;                     break;                  }                if(!flag) B[num++]=a[i].len;             }             cout<<num<<endl;          }           return 0;      }  
0 0