osi系统模型和tcp/ip模型

来源:互联网 发布:vray for rhino mac 编辑:程序博客网 时间:2024/05/16 11:01



OSI(Open System Interconnect)开放系统互联。目的是使得不同的系统不同的网络之间实现可靠的通讯,因此其最主要的功能就是帮助不同类型的主机实现数据传输 。

设备是那一层的:关键看它工作时利用哪一层的数据头部信息。网桥工作时,是以MAC头部来决定转发端口的,因此显然它是数据链路层的设备。

物理层:透明的传输比特流。网卡,网线,集线器,中继器,调制解调器

数据链路层:实现在相邻节点(node)间的透明、可靠的数据传输,具体要实现下列功能:链路管理、帧同步、差错控制、流量控制。 网桥,交换机

网络层:通过路由选择算法,为报文或分组通过通信子网选择最适当的路径。路由器

网关工作在第四层传输层及其以上

交换机和路由器的区别:

(1)工作层次不同。

交换机是指转发和过滤帧,工作在数据链路层。一种基于MAC(网卡的硬件地址)识别,为始发者和接收者之间建立临时的联网路径。

路由器(Router)亦称选径器,是在网络层实现互连的设备。可以连接多个网络或网段的网络设备,包括局域网和广域网。

(2)数据转发依据的对象不同

交换机是利用物理地址或者说MAC地址来确定转发数据的目的地址。而路由器则是利用不同网络的ID号(即IP地址)来确定数据转发的地址。

MAC地址通常是硬件自带的,由网卡生产商来分配的,而且已经固化到了网卡中去,一般来说是不可更改的。而IP地址则通常由网络管理员或系统自动分配。

(3)传统的交换机只能分割冲突域,不能分割广播域;而路由器可以分割广播域

由交换机连接的网段仍属于同一个广播域,广播数据包会在交换机连接的所有网段上传播,在某些情况下会导致通信拥挤和安全漏洞。连接到路由器上的网段会被分配成不同的广播域,广播数据不会穿过路由器。虽然第三层以上交换机具有VLAN功能,也可以分割广播域,但是各子广播域之间是不能通信交流的,它们之间的交流仍然需要路由器。

冲突域:在同一个冲突域中的每一个节点都能收到所有被发送的帧。一个站点向另一个站点发出信号。能收到信号的站点就构成一个冲突域。

广播域:网络中能接收任一设备发出的广播帧的所有设备的集合。一个局域网就是一个广播域(往往是指一个IP段内),广播域中的机器可以收到域中其他任何一台机器的广播,而不能收到域外机器的广播,域外机器也不能收到域内机器发的广播;

HUB 所有端口都在同一个广播域,冲突域内。

Swith所有端口都在同一个广播域内,而每一个端口就是一个冲突域。

1、物理层:利用传输介质为数据链路层提供物理连接,实现比特流的透明传输。

物理层的作用是实现相邻计算机节点之间比特流的透明传送,尽可能屏蔽掉具体传输介质和物理设备的差异。使其上面的数据链路层不必考虑网络的具体传输介质是什么。“透明传送比特流”表示经实际电路传送后的比特流没有发生变化,对传送的比特流来说,这个电路好像是看不见的。

负责将信息编码成电流脉冲或其它信号用于网上传输。所有比物理层高的层都通过事先定义好的接口而与它通话。如以太网的附属单元接口(AUI),一个DB-15连接器可被用来连接层一和层二。

它由计算机和网络介质之间的实际界面组成,

定义机械特性:如接口形状、大小、引线数码;

电器特性:规定电压范围

功能特性:规定-5V代表0;5V代表1

过程特性:建立连接时各个部件的步骤。

2、数据链路层:具体工作是接收来自物理层的位流形式的数据,并封装成帧,传送到上一层;同样,也将来自上层的数据帧,拆装为位流形式的数据转发到物理层;并且,还负责处理接收端发回的确认帧的信息,以便提供可靠的数据传输。

该层通常又被分为介质访问控制(MACMedia Access Control)和逻辑链路控制(LLCLogical Link Control两个子层。

MAC子层的主要任务是解决共享型网络中多用户对信道竞争的问题,完成网络介质的访问控制;

LLC子层的主要任务是建立和维护网络连接,执行差错校验、流量控制和链路控制

3、网络层:通过路由选择算法,为报文或分组通过通信子网选择最适当的路径。该层控制数据链路层与传输层之间的信息转发,建立、维持和终止网络的连接。具体地说,数据链路层的数据在这一层被转换为数据包,然后通过路径选择、分段组合、顺序、进/出路由等控制,将信息从一个网络设备传送到另一个网络设备。

一般地,数据链路层是解决同一网络内节点之间的通信,而网络层主要解决不同子网间的通信。例如在广域网之间通信时,必然会遇到路由(即两节点间可能有多条路径)选择问题。

4、传输层:用户提供可靠的端到端的差错和流量控制,保证报文的正确传输。传输层的作用是向高层屏蔽下层数据通信的细节,即向用户透明地传送报文。

传输连接管理:提供建立、维护和拆除传输连接的功能。传输层在网络层的基础上为高层提供“面向连接”和“面向无接连”的两种服务。

处理传输差错:提供可靠的“面向连接”和不太可靠的“面向无连接”的数据传输服务、差错控制和流量控制。在提供“面向连接”服务时,通过这一层传输的数据将由目标设备确认,如果在指定的时间内未收到确认信息,数据将被重发。

5、会话层:是用户应用程序和网络之间的接口。向两个实体的表示层提供建立和使用连接的方法。将不同实体之间的表示层的连接称为会话。因此会话层的任务就是组织和协调两个会话进程之间的通信,并对数据交换进行管理。

用户可以按照半双工、单工和全双工的方式建立会话。当建立会话时,用户必须提供他们想要连接的远程地址。而这些地址与MAC(介质访问控制子层)地址或网络层的逻辑地址不同,它们是为用户专门设计的,更便于用户记忆。域名(DN)就是一种网络上使用的远程地址例如:www.3721.com就是一个域名。

6、表示层:其主要功能是“处理用户信息的表示问题,如编码、数据格式转换、压缩解压缩和加密解密”等。

7、应用层:在其他6层工作的基础上,负责完成网络中应用程序与网络操作系统之间的联系,建立与结束使用者之间的联系,并完成网络用户提出的各种网络服务及应用所需的监督、管理和服务等各种协议。此外,该层还负责协调各个应用程序间的工作。

注:下面4层(物理层、数据链路层、网络层和传输层)主要提供数据传输和交换功能,即以节点到节点之间的通信为主;第4层作为上下两部分的桥梁,是整个网络体系结构中最关键的部分;而上3层(会话层、表示层和应用层)则以提供用户与应用程序之间的信息和数据处理功能为主。简言之,下4层主要完成通信子网的功能,上3层主要完成资源子网的功能。

0 0