第十一周--项目一--二叉树的层次遍历2

来源:互联网 发布:英伦对决最新票房数据 编辑:程序博客网 时间:2024/06/03 11:46
*计算机控制工程学院*班级:计156-2*姓名:陈飞*问题及代码:[cpp] view plain copy print?#define MaxSize 100  typedef char ElemType;  typedef struct node  {      ElemType data;              //数据元素      struct node *lchild;        //指向左孩子      struct node *rchild;        //指向右孩子  } BTNode;  void CreateBTNode(BTNode *&b,char *str);        //由str串创建二叉链  BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针  BTNode *LchildNode(BTNode *p);  //返回*p节点的左孩子节点指针  BTNode *RchildNode(BTNode *p);  //返回*p节点的右孩子节点指针  int BTNodeDepth(BTNode *b); //求二叉树b的深度  void DispBTNode(BTNode *b); //以括号表示法输出二叉树  void DestroyBTNode(BTNode *&b);  //销毁二叉树  #include <stdio.h>  #include <malloc.h>  void CreateBTNode(BTNode *&b,char *str)     //由str串创建二叉链  {      BTNode *St[MaxSize],*p=NULL;      int top=-1,k,j=0;      char ch;      b=NULL;             //建立的二叉树初始时为空      ch=str[j];      while (ch!='\0')    //str未扫描完时循环      {          switch(ch)          {          case '(':              top++;              St[top]=p;              k=1;              break;      //为左节点          case ')':              top--;              break;          case ',':              k=2;              break;                          //为右节点          default:              p=(BTNode *)malloc(sizeof(BTNode));              p->data=ch;              p->lchild=p->rchild=NULL;              if (b==NULL)                    //p指向二叉树的根节点                  b=p;              else                            //已建立二叉树根节点              {                  switch(k)                  {                  case 1:                      St[top]->lchild=p;                      break;                  case 2:                      St[top]->rchild=p;                      break;                  }              }          }          j++;          ch=str[j];      }  }  BTNode *FindNode(BTNode *b,ElemType x)  //返回data域为x的节点指针  {      BTNode *p;      if (b==NULL)          return NULL;      else if (b->data==x)          return b;      else      {          p=FindNode(b->lchild,x);          if (p!=NULL)              return p;          else              return FindNode(b->rchild,x);      }  }  BTNode *LchildNode(BTNode *p)   //返回*p节点的左孩子节点指针  {      return p->lchild;  }  BTNode *RchildNode(BTNode *p)   //返回*p节点的右孩子节点指针  {      return p->rchild;  }  int BTNodeDepth(BTNode *b)  //求二叉树b的深度  {      int lchilddep,rchilddep;      if (b==NULL)          return(0);                          //空树的高度为0      else      {          lchilddep=BTNodeDepth(b->lchild);   //求左子树的高度为lchilddep          rchilddep=BTNodeDepth(b->rchild);   //求右子树的高度为rchilddep          return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);      }  }  void DispBTNode(BTNode *b)  //以括号表示法输出二叉树  {      if (b!=NULL)      {          printf("%c",b->data);          if (b->lchild!=NULL || b->rchild!=NULL)          {              printf("(");              DispBTNode(b->lchild);              if (b->rchild!=NULL) printf(",");              DispBTNode(b->rchild);              printf(")");          }      }  }  void DestroyBTNode(BTNode *&b)   //销毁二叉树  {      if (b!=NULL)      {          DestroyBTNode(b->lchild);          DestroyBTNode(b->rchild);          free(b);      }  }  #include <stdio.h>  #include <malloc.h>    #define N 30  typedef ElemType SqBTree[N];  BTNode *trans(SqBTree a,int i)  {      BTNode *b;      if (i>N)          return(NULL);      if (a[i]=='#')          return(NULL);           //当节点不存在时返回NULL      b=(BTNode *)malloc(sizeof(BTNode)); //创建根节点      b->data=a[i];      b->lchild=trans(a,2*i);                 //递归创建左子树      b->rchild=trans(a,2*i+1);               //递归创建右子树      return(b);                              //返回根节点  }  BTNode *CreateBT1(char *pre,char *in,int n)  /*pre存放先序序列,in存放中序序列,n为二叉树结点个数, 本算法执行后返回构造的二叉链的根结点指针*/  {      BTNode *s;      char *p;      int k;      if (n<=0) return NULL;      s=(BTNode *)malloc(sizeof(BTNode));     //创建二叉树结点*s      s->data=*pre;      for (p=in; p<in+n; p++)                 //在中序序列中找等于*ppos的位置k          if (*p==*pre)                       //pre指向根结点              break;                          //在in中找到后退出循环      k=p-in;                                 //确定根结点在in中的位置      s->lchild=CreateBT1(pre+1,in,k);        //递归构造左子树      s->rchild=CreateBT1(pre+k+1,p+1,n-k-1); //递归构造右子树      return s;  }    int main()  {      ElemType pre[]="ABDGCEF",in[]="DGBAECF";      BTNode *b1;      b1=CreateBT1(pre,in,7);      printf("b1:");      DispBTNode(b1);      printf("\n");      return 0;  }  2.由中序和后序构造二叉树:[cpp] view plain copy print?BTNode *CreateBT2(char *post,char *in,int n)  /*post存放后序序列,in存放中序序列,n为二叉树结点个数, 本算法执行后返回构造的二叉链的根结点指针*/  {      BTNode *s;      char r,*p;      int k;      if (n<=0) return NULL;      r=*(post+n-1);                          //根结点值      s=(BTNode *)malloc(sizeof(BTNode));     //创建二叉树结点*s      s->data=r;      for (p=in; p<in+n; p++)                 //在in中查找根结点          if (*p==r)              break;      k=p-in;                                 //k为根结点在in中的下标      s->lchild=CreateBT2(post,in,k);         //递归构造左子树      s->rchild=CreateBT2(post+k,p+1,n-k-1);  //递归构造右子树      return s;  }    int main()  {      ElemType in[]="DGBAECF",post[]="GDBEFCA";      BTNode *b2;      b2=CreateBT2(post,in,7);      printf("b2:");      DispBTNode(b2);      printf("\n");      return 0;  }  3.由顺序存储结构转为二叉链存储结构:[cpp] view plain copy print?<span style="font-size:12px;">int main()  {      BTNode *b;      ElemType s[]="0ABCD#EF#G####################";      b=trans(s,1);      printf("b:");      DispBTNode(b);      printf("\n");      return 0;  }</span>  运行结果:
<img src="http://img.blog.csdn.net/20151116170347714?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" />

0 0
原创粉丝点击