307. Range Sum Query - Mutable**

来源:互联网 发布:斑马梦龙网络计划心得 编辑:程序博客网 时间:2024/06/06 18:42

Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive.

The update(i, val) function modifies nums by updating the element at index i to val.

Example:

Given nums = [1, 3, 5]sumRange(0, 2) -> 9update(1, 2)sumRange(0, 2) -> 8

Note:

  1. The array is only modifiable by the update function.
  2. You may assume the number of calls to update and sumRange function is distributed evenly.  
My code:
public class NumArray {    private int[] nums;    private int[] sums;    public NumArray(int[] nums) {        if(nums==null||nums.length==0) return;        this.nums=nums;        this.sums=new int[nums.length];        this.sums[0] = nums[0];        for(int i=1;i<nums.length;i++){            this.sums[i]=this.sums[i-1]+this.nums[i];        }    }        public void update(int i, int val) {        for(int j=i;j<nums.length;j++){            this.sums[j]+=val-this.nums[i];        }        this.nums[i]=val;    }        public int sumRange(int i, int j) {        if(i==0) return this.sums[j];        return this.sums[j]-this.sums[i-1];            }}/** * Your NumArray object will be instantiated and called as such: * NumArray obj = new NumArray(nums); * obj.update(i,val); * int param_2 = obj.sumRange(i,j); */
总结:思路是对的,但是时间复杂度太高,对于较大的数组和频繁的update操作time limit excceeded。

public class NumArray {    int[] nums;int[] BIT;int n;public NumArray(int[] nums) {this.nums = nums;n = nums.length;BIT = new int[n + 1];for (int i = 0; i < n; i++)init(i, nums[i]);}public void init(int i, int val) {i++;while (i <= n) {BIT[i] += val;i += (i & -i);}}void update(int i, int val) {int diff = val - nums[i];nums[i] = val;init(i, diff);}public int getSum(int i) {int sum = 0;i++;while (i > 0) {sum += BIT[i];i -= (i & -i);}return sum;}public int sumRange(int i, int j) {return getSum(j) - getSum(i - 1);}}



树状数组:binary indexed tree

1.“树状数组”数据结构的一种应用

  对含有n个元素的数组(a[1],...,a[k],...,a[n]):

  (1)求出第i个到第j个元素的和,sum=a[i]+...+a[j]。

    进行j-i+1次加法,复杂度为O(j-i+1)

  (2)任意修改其中某个元素的值。

    使用数组下标可以直接定位修改,时间复杂度为O(1)

   对于同时支持上述两种操作的系统中,求和操作(1)求任意连续个数组元素和的平均时间复杂度为O(n),修改操作(2)时间复杂度是O(1)。如果系统中大量进行上述两种操作m次,其中执行操作(1)概率1/p,操作(2)概率1-1/p,则系统时间复杂度为:

  可以使用树状数组使得上述两种操作的时间复杂度为O(m*logn)

2.树状数组介绍

  核心思想:

    (1)树状数组中的每个元素是原数组中一个或者多个连续元素的和。

    (2)在进行连续求和操作a[1]+...+a[n]时,只需要将树状数组中某几个元素的和即可。时间复杂度为O(lgn)

    (3)在进行修改某个元素a[i]时,只需要修改树状数组中某几个元素的和即可。时间复杂度为O(lgn)

  下图就是一个树状数组的示意图:

  解释如下:

  1) a[]: 保存原始数据的数组。(操作(1)求其中连续多个数的和,操作(2)任意修改其中一个元素)

    e[]: 树状数组,其中的任意一个元素e[i]可能是一个或者多个a数组中元素的和。如e[2]=a[1]+a[2]; e[3]=a[3]; e[4]=a[1]+a[2]+a[3]+a[4]。 

  2) e[i]是几个a数组中的元素的和?

    如果数字 i 的二进制表示中末尾有k个连续的0,则e[i]是a数组中2^k个元素的和,则e[i]=a[i-2^k+1]+a[i-2^k+2]+...+a[i-1]+a[i]。

    如:4=100(2)  e[4]=a[1]+a[2]+a[3]+a[4];

      6=110(2)  e[6]=a[5]+a[6]

      7=111(2)  e[7]=a[7]

  3) 后继:可以理解为节点的父亲节点。离它最近的,且编号末位连续0比它多的就是的父亲,如e[2]是e[1]的后继;e[4]是e[2]的后继。

      如e[4] = e[2]+e[3]+a[4] = a[1]+a[2]+a[3]+a[4] ,e[2]、e[3]的后继就是e[4]。

      后继主要是用来计算e数组,将当前已经计算出的e[i]添加到他们后继中。

    前驱:节点前驱的编号即为比自己小的,最近的,最末连续0比自己多的节点。如e[7]的前驱是e[6],e[6]的前驱是e[4]。

        前驱主要是在计算连续和时,避免重复添加元素。

      如:Sum(7)=a[1]+...+a[7]=e[7]+e[6]+e[4]。(e[7]的前驱是e[6], e[6]的前驱是e[4])

    计算前驱与后继:

      lowbit(i) = ( (i-1) ^ i) & i ;

      节点e[i]的前驱为 e[ i - lowbit(i) ];

      节点e[i]的前驱为 e[ i + lowbit(i) ]





0 0