HAL 详解之 hardware 详解

来源:互联网 发布:深入浅出java 下载 编辑:程序博客网 时间:2024/06/07 10:29

文章出处:http://blog.csdn.net/shift_wwx/article/details/54969612

请转载的朋友标明出处~~


《Android 系统HAL 简介》一文和Android,在争议中逃离 Linux 内核的 GPL 约束》中对HAL 做了简单的简介,这一文中对HAL 进行详细的分析。



android HAL 主要框架来源于:

/hardware/libhardware/hardware.c

/hardware/libhardware/include/hardware/hardware.h


本文主要对这两部分分析:

  • hardware.h
  • hardware.c
一、hardware.h
1、hw_module_t
/** * Every hardware module must have a data structure named HAL_MODULE_INFO_SYM * and the fields of this data structure must begin with hw_module_t * followed by module specific information. */typedef struct hw_module_t {    /** tag must be initialized to HARDWARE_MODULE_TAG */    uint32_t tag;    /**     * The API version of the implemented module. The module owner is     * responsible for updating the version when a module interface has     * changed.     *     * The derived modules such as gralloc and audio own and manage this field.     * The module user must interpret the version field to decide whether or     * not to inter-operate with the supplied module implementation.     * For example, SurfaceFlinger is responsible for making sure that     * it knows how to manage different versions of the gralloc-module API,     * and AudioFlinger must know how to do the same for audio-module API.     *     * The module API version should include a major and a minor component.     * For example, version 1.0 could be represented as 0x0100. This format     * implies that versions 0x0100-0x01ff are all API-compatible.     *     * In the future, libhardware will expose a hw_get_module_version()     * (or equivalent) function that will take minimum/maximum supported     * versions as arguments and would be able to reject modules with     * versions outside of the supplied range.     */    uint16_t module_api_version;#define version_major module_api_version    /**     * version_major/version_minor defines are supplied here for temporary     * source code compatibility. They will be removed in the next version.     * ALL clients must convert to the new version format.     */    /**     * The API version of the HAL module interface. This is meant to     * version the hw_module_t, hw_module_methods_t, and hw_device_t     * structures and definitions.     *     * The HAL interface owns this field. Module users/implementations     * must NOT rely on this value for version information.     *     * Presently, 0 is the only valid value.     */    uint16_t hal_api_version;#define version_minor hal_api_version    /** Identifier of module */    const char *id;    /** Name of this module */    const char *name;    /** Author/owner/implementor of the module */    const char *author;    /** Modules methods */    struct hw_module_methods_t* methods;    /** module's dso */    void* dso;#ifdef __LP64__    uint64_t reserved[32-7];#else    /** padding to 128 bytes, reserved for future use */    uint32_t reserved[32-7];#endif} hw_module_t;
首先来看结构体的解释:
每一个硬件模块必须有一个命名为HAL_MODULE_INFO_SYM的数据结构体。这个结构体成员必须以hw_module_t 开头。
这个命名在头文件中有定义:
#define HAL_MODULE_INFO_SYM         HMI
例如hdmi cec:
typedef struct hdmi_cec_module {    /**     * Common methods of the HDMI CEC module.  This *must* be the first member of     * hdmi_cec_module as users of this structure will cast a hw_module_t to hdmi_cec_module     * pointer in contexts where it's known the hw_module_t references a hdmi_cec_module.     */    struct hw_module_t common;} hdmi_module_t;
hdmi cec 就定义了一个自己的结构体hdmi_module_t,而开头也必须是hw_module_t
下面来详细解释hw_module_t 的数据成员:
1)tag
这个tag 必须初始化为 HARDWARE_MODULE_TAG
2)module_api_version
标记硬件模块的接口api 版本,当模块的接口变化的时候由module 自身更新这个值。
例如hdmi cec 就自己定义了一个版本:
#define HDMI_CEC_MODULE_API_VERSION_1_0 HARDWARE_MODULE_API_VERSION(1, 0)
3)hal_api_version
标记HAL api 的版本,主要标记hw_module_t,hw_module_methods_t,hw_device_t 等结构体的版本
目前都用宏HARDWARE_HAL_API_VERSION表示:
#define HARDWARE_HAL_API_VERSION HARDWARE_MAKE_API_VERSION(1, 0)
4)id
硬件模块的标记,查找module 的时候就是通过这个查找,很关键
例如hdmi cec:
#define HDMI_CEC_HARDWARE_MODULE_ID "hdmi_cec"
5)name
硬件模块的名字,与id 不同,id 原意是Identifier,也就是辨认都是通过id
6)author
author/owner/implementor 的标记
7)methods
变量是结构体指针 hw_module_methods_t*,里面是一个open 函数,device 的open 就靠这个methods
8)dso
在hardware.c中会解释,dlopen so 时候的handle

2、hw_module_methods_t
typedef struct hw_module_methods_t {    /** Open a specific device */    int (*open)(const struct hw_module_t* module, const char* id,            struct hw_device_t** device);} hw_module_methods_t;
hw_module_t 的成员,放的是函数指针,成员是open,也就是硬件模块自身要有这样的open 函数,用于实现硬件模块对相应的设备进行初始化

3、hw_device_t
/** * Every device data structure must begin with hw_device_t * followed by module specific public methods and attributes. */typedef struct hw_device_t {    /** tag must be initialized to HARDWARE_DEVICE_TAG */    uint32_t tag;    /**     * Version of the module-specific device API. This value is used by     * the derived-module user to manage different device implementations.     *     * The module user is responsible for checking the module_api_version     * and device version fields to ensure that the user is capable of     * communicating with the specific module implementation.     *     * One module can support multiple devices with different versions. This     * can be useful when a device interface changes in an incompatible way     * but it is still necessary to support older implementations at the same     * time. One such example is the Camera 2.0 API.     *     * This field is interpreted by the module user and is ignored by the     * HAL interface itself.     */    uint32_t version;    /** reference to the module this device belongs to */    struct hw_module_t* module;    /** padding reserved for future use */#ifdef __LP64__    uint64_t reserved[12];#else    uint32_t reserved[12];#endif    /** Close this device */    int (*close)(struct hw_device_t* device);} hw_device_t;
上面hw_module_t 的时候说到,每个硬件模块有个名字为HAL_MODULE_INFO_SYM 的数据结构,而且成员必须是hw_module_t 开头。
这里一样,在硬件模块定义自身设备结构的时候,数据成员必须以hw_device_t 开头。
例如hdmi cec,在定义自身设备成员的时候就是以这个开头:
typedef struct hdmi_cec_device {    /**     * Common methods of the HDMI CEC device.  This *must* be the first member of     * hdmi_cec_device as users of this structure will cast a hw_device_t to hdmi_cec_device     * pointer in contexts where it's known the hw_device_t references a hdmi_cec_device.     */    struct hw_device_t common;    /*     * (*add_logical_address)() passes the logical address that will be used     * in this system.     *     * HAL may use it to configure the hardware so that the CEC commands addressed     * the given logical address can be filtered in. This method can be called     * as many times as necessary in order to support multiple logical devices.     * addr should be in the range of valid logical addresses for the call     * to succeed.     *     * Returns 0 on success or -errno on error.     */    int (*add_logical_address)(const struct hdmi_cec_device* dev, cec_logical_address_t addr);    /*     * (*clear_logical_address)() tells HAL to reset all the logical addresses.     *     * It is used when the system doesn't need to process CEC command any more,     * hence to tell HAL to stop receiving commands from the CEC bus, and change     * the state back to the beginning.     */    void (*clear_logical_address)(const struct hdmi_cec_device* dev);    /*     * (*get_physical_address)() returns the CEC physical address. The     * address is written to addr.     *     * The physical address depends on the topology of the network formed     * by connected HDMI devices. It is therefore likely to change if the cable     * is plugged off and on again. It is advised to call get_physical_address     * to get the updated address when hot plug event takes place.     *     * Returns 0 on success or -errno on error.     */    int (*get_physical_address)(const struct hdmi_cec_device* dev, uint16_t* addr);    /*     * (*send_message)() transmits HDMI-CEC message to other HDMI device.     *     * The method should be designed to return in a certain amount of time not     * hanging forever, which can happen if CEC signal line is pulled low for     * some reason. HAL implementation should take the situation into account     * so as not to wait forever for the message to get sent out.     *     * It should try retransmission at least once as specified in the standard.     *     * Returns error code. See HDMI_RESULT_SUCCESS, HDMI_RESULT_NACK, and     * HDMI_RESULT_BUSY.     */    int (*send_message)(const struct hdmi_cec_device* dev, const cec_message_t*);    /*     * (*register_event_callback)() registers a callback that HDMI-CEC HAL     * can later use for incoming CEC messages or internal HDMI events.     * When calling from C++, use the argument arg to pass the calling object.     * It will be passed back when the callback is invoked so that the context     * can be retrieved.     */    void (*register_event_callback)(const struct hdmi_cec_device* dev,            event_callback_t callback, void* arg);    /*     * (*get_version)() returns the CEC version supported by underlying hardware.     */    void (*get_version)(const struct hdmi_cec_device* dev, int* version);    /*     * (*get_vendor_id)() returns the identifier of the vendor. It is     * the 24-bit unique company ID obtained from the IEEE Registration     * Authority Committee (RAC).     */    void (*get_vendor_id)(const struct hdmi_cec_device* dev, uint32_t* vendor_id);    /*     * (*get_port_info)() returns the hdmi port information of underlying hardware.     * info is the list of HDMI port information, and 'total' is the number of     * HDMI ports in the system.     */    void (*get_port_info)(const struct hdmi_cec_device* dev,            struct hdmi_port_info* list[], int* total);    /*     * (*set_option)() passes flags controlling the way HDMI-CEC service works down     * to HAL implementation. Those flags will be used in case the feature needs     * update in HAL itself, firmware or microcontroller.     */    void (*set_option)(const struct hdmi_cec_device* dev, int flag, int value);    /*     * (*set_audio_return_channel)() configures ARC circuit in the hardware logic     * to start or stop the feature. Flag can be either 1 to start the feature     * or 0 to stop it.     *     * Returns 0 on success or -errno on error.     */    void (*set_audio_return_channel)(const struct hdmi_cec_device* dev, int port_id, int flag);    /*     * (*is_connected)() returns the connection status of the specified port.     * Returns HDMI_CONNECTED if a device is connected, otherwise HDMI_NOT_CONNECTED.     * The HAL should watch for +5V power signal to determine the status.     */    int (*is_connected)(const struct hdmi_cec_device* dev, int port_id);    /* Reserved for future use to maximum 16 functions. Must be NULL. */    void* reserved[16 - 11];} hdmi_cec_device_t;
下面来详细解释hw_device_t 的数据成员:
1)tag
必须初始化为HARDWARE_DEVICE_TAG
2)version

硬件设备接口的版本

3)module

标记该设备属于哪个硬件模块,例如audio 可能会有多种device

4)reserved

暂时没用到

5)close

函数指针,也就是说需要实现close 用于后面device 设备close 回收


4、两个对外接口

hw_get_module、hw_get_module_by_class

下面hardware.c 中详细说明


小结:android HAL 在创建的时候,需要实现四个部分:

1、定义一个名字叫HMI 或HAL_MODULE_INFO_SYM 的模块数据结构,开头必须是hw_module_t

2、定义hw_module_methods_t 的结构体,实现open

3、定义一个设备的数据结构,里面可以设备自身相关的数据成员,但开头必须是hw_device_t

4、设备自身的成员的处理


二、hardware.c

主要目的就是通过函数hw_get_module、hw_get_module_by_class 找到对应的模组

1、hw_get_module

int hw_get_module(const char *id, const struct hw_module_t **module){    return hw_get_module_by_class(id, NULL, module);}
可以看到hw_get_module 和hw_get_module_by_class 的根本区别第二个参数是否为NULL

在说明hardware.h 的时候说明过,HAL 首先要定义一个数据结构,这个数据结构开头必须是hw_module_t,也就是说hw_module_t 可能是共同的,但是模块自身的数据结构实现的接口可能不同。例如audio 就分primary、a2dp,这两个模组的数据结构开头hw_module_t 可以是相同的。

因此,hw_get_module_by_class 的第一个参数是hw_module_t 的id,第二个参数是区分模组。

2、hw_get_module_by_class

int hw_get_module_by_class(const char *class_id, const char *inst,                           const struct hw_module_t **module){    int i = 0;    char prop[PATH_MAX] = {0};    char path[PATH_MAX] = {0};    char name[PATH_MAX] = {0};    char prop_name[PATH_MAX] = {0};    if (inst)        snprintf(name, PATH_MAX, "%s.%s", class_id, inst);    else        strlcpy(name, class_id, PATH_MAX);    /*     * Here we rely on the fact that calling dlopen multiple times on     * the same .so will simply increment a refcount (and not load     * a new copy of the library).     * We also assume that dlopen() is thread-safe.     */    /* First try a property specific to the class and possibly instance */    snprintf(prop_name, sizeof(prop_name), "ro.hardware.%s", name);    if (property_get(prop_name, prop, NULL) > 0) {        if (hw_module_exists(path, sizeof(path), name, prop) == 0) {            goto found;        }    }    /* Loop through the configuration variants looking for a module */    for (i=0 ; i<HAL_VARIANT_KEYS_COUNT; i++) {        if (property_get(variant_keys[i], prop, NULL) == 0) {            continue;        }        if (hw_module_exists(path, sizeof(path), name, prop) == 0) {            goto found;        }    }    /* Nothing found, try the default */    if (hw_module_exists(path, sizeof(path), name, "default") == 0) {        goto found;    }    return -ENOENT;found:    /* load the module, if this fails, we're doomed, and we should not try     * to load a different variant. */    return load(class_id, path, module);}
1)首先确定模组的全名name

class_id.inst 组成的,如果inst 是NULL 模组的全名就是id

2) 根据name 找到这个so 是否存在,如果存在调用load

从这里看出来,HAL 的so 命名是有规定的

a、ro.hardware.name 已经定义好的,这里的name 就是1)中说的全名

如果定义了,so 的名字应该是name.prop.so

b、ro.hardware 或 ro.produce.board 或 ro.board.platform 或 ro.arch 中定义了prop

组合后so 的名字是name.prop.so

c、如果没有这样的prop定义,那so 的名字是name.default.so

例如目前我们平台的hdmi cec 的so 就是来源ro.hardware 中的prop

3、load

static int load(const char *id,        const char *path,        const struct hw_module_t **pHmi){    int status = -EINVAL;    void *handle = NULL;    struct hw_module_t *hmi = NULL;    /*     * load the symbols resolving undefined symbols before     * dlopen returns. Since RTLD_GLOBAL is not or'd in with     * RTLD_NOW the external symbols will not be global     */    handle = dlopen(path, RTLD_NOW);    if (handle == NULL) {        char const *err_str = dlerror();        ALOGE("load: module=%s\n%s", path, err_str?err_str:"unknown");        status = -EINVAL;        goto done;    }    /* Get the address of the struct hal_module_info. */    const char *sym = HAL_MODULE_INFO_SYM_AS_STR;    hmi = (struct hw_module_t *)dlsym(handle, sym);    if (hmi == NULL) {        ALOGE("load: couldn't find symbol %s", sym);        status = -EINVAL;        goto done;    }    /* Check that the id matches */    if (strcmp(id, hmi->id) != 0) {        ALOGE("load: id=%s != hmi->id=%s", id, hmi->id);        status = -EINVAL;        goto done;    }    hmi->dso = handle;    /* success */    status = 0;    done:    if (status != 0) {        hmi = NULL;        if (handle != NULL) {            dlclose(handle);            handle = NULL;        }    } else {        ALOGV("loaded HAL id=%s path=%s hmi=%p handle=%p",                id, path, *pHmi, handle);    }    *pHmi = hmi;    return status;}
1)dlopen 对应path 的so

2)dlsym 获取HMI 的地址

至此,hardware 相关的部分就讲解完。


总结:

1、获取module 方式有两种

hw_get_module_by_class、hw_get_module

前者是针对公用module 的模块,后者是单个的,当然用前者找单个的module 也是可以的,第二个参数传NULL 即可

注意最后一个参数是hw_module_t **module

2、通过1 中获取到module 数据结构指针变量在内存中地址

3、根据2 中的module 就可以调用module 中open 初始化硬件设备,最终获得hw_device_t

4、根据3 中的device 实现真正的调用,实现与内核的通信












0 0
原创粉丝点击