[mmc subsystem] host(第二章)——sdhci

来源:互联网 发布:知乎同济大学环境工程 编辑:程序博客网 时间:2024/06/08 09:15

mmc subsystem系列(持续更新中):
[mmc subsystem] 概念与框架

[mmc subsystem] mmc core(第一章)——概述
[mmc subsystem] mmc core(第二章)——数据结构和宏定义说明
[mmc subsystem] mmc core(第三章)——bus模块说明
[mmc subsystem] mmc core(第四章)——host模块说明
[mmc subsystem] mmc core(第五章)——card相关模块(mmc type card)
[mmc subsystem] mmc core(第六章)——mmc core主模块

[mmc subsystem] host(第一章)——概述
[mmc subsystem] host(第二章)——sdhci
[mmc subsystem] host(第三章)——sdhci-pltfm说明
[mmc subsystem] host(第四章)——host实例(sdhci-msm说明)

建议先参考《[mmc subsystem] 概念与框架》对整体有一个了解。

==========================================================================================================

一、sdhci core说明

1、sdhci说明

具体参考《host(第一章)——概述》
SDHC:Secure Digital(SD) Host Controller,是指一套sd host控制器的设计标准,其寄存器偏移以及意义都有一定的规范,并且提供了对应的驱动程序,方便vendor进行host controller的开发。
vendor按照这套标准设计host controller之后,可以直接使用sdhci driver来实现host controller的使用,(qcom和samsung都使用了这套标准)。而vendor只需要实现平台相关的部分、如clock、pinctrl、power等等的部分即可。
关于这个标准,我们可以参考《SDHC_Ver3.00_Final_110225》。
注意,强调一下,这是一种mmc host controller的设计标准,其本质上还是属于mmc host。并且,其兼容mmc type card,而不是说只能使用于sd type card。

2、sdhci core

因为sdhci driver并不是某个特定host的driver,而是提供了一些接口和操作集方法给对应的host driver使用。
因此,我们将sdhci.c的代码部分称之为sdhci core用以和host driver区分。
其主要功能如下:

  • 为host driver提供分配、释放sdhci_host的接口
  • 为host driver提供注册、卸载sdhci_host的接口
  • 实现sdhci_host和mmc_host的对接(也就是mmc core的对接)
  • 实现host关于SDHCI标准的通用操作(sdhci_ops)
  • 实现host的通用电源管理操作

注意,clock和pinctrl是由host driver自己管理,sdhci core并不参与。

3、代码位置

drivers/mmc/host/sdhci.c
drivers/mmc/host/sdhci.h

二、数据结构

1、struct sdhci_host

sdhci core将host抽象出struct sdhci_host来进行管理和维护。

  • 数据结构如下:
struct sdhci_host {    /* Data set by hardware interface driver */    const char *hw_name;    /* Hardware bus name */      // 名称    unsigned int quirks;    /* Deviations from spec. */         // 癖好,可以理解为硬件sdhci controller和标准sdhci规范不符合的地方。    unsigned int quirks2;   /* More deviations from spec. */   // 癖好2,可以理解为硬件sdhci controller和标准sdhci规范不符合的地方。    int irq;        /* Device IRQ */      // sdhci的中断    void __iomem *ioaddr;   /* Mapped address */   // sdhci寄存器的基地址    const struct sdhci_ops *ops;    /* Low level hw interface */      // 底层硬件的操作接口    struct regulator *vmmc;     /* Power regulator (vmmc) */       // sdhci core的LDO    struct regulator *vqmmc;    /* Signaling regulator (vccq) */      // 给sdhci io供电的LDO    /* Internal data */    struct mmc_host *mmc;   /* MMC structure */      // struct mmc_host,用于注册到mmc subsystem中    u64 dma_mask;       /* custom DMA mask */    spinlock_t lock;    /* Mutex */      // 自旋锁    int flags;      /* Host attributes */   // sdhci的一些标识    unsigned int version;   /* SDHCI spec. version */   // 当前sdhci的硬件版本    unsigned int max_clk;   /* Max possible freq (MHz) */   // 该sdhci支持的最大电压    unsigned int timeout_clk;   /* Timeout freq (KHz) */   // 超时频率    unsigned int clk_mul;   /* Clock Muliplier value */   // 当前倍频值    unsigned int clock; /* Current clock (MHz) */      // 当前工作频率    u8 pwr;         /* Current voltage */   // 当前工作电压    bool runtime_suspended; /* Host is runtime suspended */      // 是否处于runtime suspend状态    struct mmc_request *mrq;    /* Current request */      // 当前正在处理的请求    struct mmc_command *cmd;    /* Current command */   // 当前的命令请求    struct mmc_data *data;  /* Current data request */      // 当前的数据请求    unsigned int data_early:1;  /* Data finished before cmd */   // 表示在CMD处理完成前,data已经处理完成    struct sg_mapping_iter sg_miter;    /* SG state for PIO */    unsigned int blocks;    /* remaining PIO blocks */    int sg_count;       /* Mapped sg entries */    u8 *adma_desc;      /* ADMA descriptor table */    u8 *align_buffer;   /* Bounce buffer */    unsigned int adma_desc_sz; /* ADMA descriptor table size */    unsigned int adma_desc_line_sz; /* ADMA descriptor line size */    unsigned int align_buf_sz; /* Bounce buffer size */    unsigned int align_bytes; /* Alignment bytes (4/8 for 32-bit/64-bit) */    unsigned int adma_max_desc; /* Max ADMA descriptos (max sg segments) */    dma_addr_t adma_addr;   /* Mapped ADMA descr. table */    dma_addr_t align_addr;  /* Mapped bounce buffer */    struct tasklet_struct card_tasklet; /* Tasklet structures */      // card tasklet,用于处理card的插入或者拔出事件    struct tasklet_struct finish_tasklet;      // finsh tasklet,用来通知上层一个请求处理完成(包括出错的情况)    struct timer_list timer;    /* Timer for timeouts */   // 超时定时器链表    u32 caps;       /* Alternative CAPABILITY_0 */   // 表示该sdhci controller的属性    u32 caps1;      /* Alternative CAPABILITY_1 */   // 表示该sdhci controller的属性    unsigned int            ocr_avail_sdio; /* OCR bit masks */   // 在该sdhci controller上可用的sdio card的ocr值掩码(代表了其可用电压)    unsigned int            ocr_avail_sd;   // 在该sdhci controller上可用的sd card的ocr值掩码(代表了其可用电压)     unsigned int            ocr_avail_mmc;   /// 在该sdhci controller上可用的mmc card的ocr值掩码(代表了其可用电压) /* 以下和mmc的tuning相关 */    wait_queue_head_t   buf_ready_int;  /* Waitqueue for Buffer Read Ready interrupt */    unsigned int        tuning_done;    /* Condition flag set when CMD19 succeeds */    unsigned int        tuning_count;   /* Timer count for re-tuning */    unsigned int        tuning_mode;    /* Re-tuning mode supported by host */#define SDHCI_TUNING_MODE_1 0    struct timer_list   tuning_timer;   /* Timer for tuning *//* 以下和sdhci的qos相关 */    struct sdhci_host_qos host_qos[SDHCI_QOS_MAX_POLICY];    enum sdhci_host_qos_policy last_qos_policy;    bool host_use_default_qos;      unsigned int pm_qos_timeout_us;         /* timeout for PM QoS request */    struct device_attribute pm_qos_tout;    struct delayed_work pm_qos_work;    struct sdhci_next next_data;    ktime_t data_start_time;    struct mutex ios_mutex;    enum sdhci_power_policy power_policy;    bool irq_enabled; /* host irq status flag */      // 表示中断是否使能?    bool async_int_supp;  /* async support to rxv int, when clks are off */    bool disable_sdio_irq_deferred; /* status of disabling sdio irq */    u32 auto_cmd_err_sts;    struct ratelimit_state dbg_dump_rs;    int reset_wa_applied; /* reset workaround status */    ktime_t reset_wa_t; /* time when the reset workaround is applied */    int reset_wa_cnt; /* total number of times workaround is used */    unsigned long private[0] ____cacheline_aligned;      // 私有数据指针};
  • 癖好1(sdhci_host->quirks)各个位意义如下:
/* Controller doesn't honor resets unless we touch the clock register */#define SDHCI_QUIRK_CLOCK_BEFORE_RESET            (1<<0)/* Controller has bad caps bits, but really supports DMA */#define SDHCI_QUIRK_FORCE_DMA                (1<<1)/* Controller doesn't like to be reset when there is no card inserted. */#define SDHCI_QUIRK_NO_CARD_NO_RESET            (1<<2)/* Controller doesn't like clearing the power reg before a change */#define SDHCI_QUIRK_SINGLE_POWER_WRITE            (1<<3)/* Controller has flaky internal state so reset it on each ios change */#define SDHCI_QUIRK_RESET_CMD_DATA_ON_IOS        (1<<4)/* Controller has an unusable DMA engine */#define SDHCI_QUIRK_BROKEN_DMA                (1<<5)/* Controller has an unusable ADMA engine */#define SDHCI_QUIRK_BROKEN_ADMA                (1<<6)/* Controller can only DMA from 32-bit aligned addresses */#define SDHCI_QUIRK_32BIT_DMA_ADDR            (1<<7)/* Controller can only DMA chunk sizes that are a multiple of 32 bits */#define SDHCI_QUIRK_32BIT_DMA_SIZE            (1<<8)/* Controller can only ADMA chunks that are a multiple of 32 bits */#define SDHCI_QUIRK_32BIT_ADMA_SIZE            (1<<9)/* Controller needs to be reset after each request to stay stable */#define SDHCI_QUIRK_RESET_AFTER_REQUEST            (1<<10)/* Controller needs voltage and power writes to happen separately */#define SDHCI_QUIRK_NO_SIMULT_VDD_AND_POWER        (1<<11)/* Controller provides an incorrect timeout value for transfers */#define SDHCI_QUIRK_BROKEN_TIMEOUT_VAL            (1<<12)/* Controller has an issue with buffer bits for small transfers */#define SDHCI_QUIRK_BROKEN_SMALL_PIO            (1<<13)/* Controller does not provide transfer-complete interrupt when not busy */#define SDHCI_QUIRK_NO_BUSY_IRQ                (1<<14)/* Controller has unreliable card detection */#define SDHCI_QUIRK_BROKEN_CARD_DETECTION        (1<<15)/* Controller reports inverted write-protect state */#define SDHCI_QUIRK_INVERTED_WRITE_PROTECT        (1<<16)/* Controller has nonstandard clock management */#define SDHCI_QUIRK_NONSTANDARD_CLOCK            (1<<17)/* Controller does not like fast PIO transfers */#define SDHCI_QUIRK_PIO_NEEDS_DELAY            (1<<18)/* Controller losing signal/interrupt enable states after reset */#define SDHCI_QUIRK_RESTORE_IRQS_AFTER_RESET        (1<<19)/* Controller has to be forced to use block size of 2048 bytes */#define SDHCI_QUIRK_FORCE_BLK_SZ_2048            (1<<20)/* Controller cannot do multi-block transfers */#define SDHCI_QUIRK_NO_MULTIBLOCK            (1<<21)/* Controller can only handle 1-bit data transfers */#define SDHCI_QUIRK_FORCE_1_BIT_DATA            (1<<22)/* Controller needs 10ms delay between applying power and clock */#define SDHCI_QUIRK_DELAY_AFTER_POWER            (1<<23)/* Controller uses SDCLK instead of TMCLK for data timeouts */#define SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK        (1<<24)/* Controller reports wrong base clock capability */#define SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN        (1<<25)/* Controller cannot support End Attribute in NOP ADMA descriptor */#define SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC        (1<<26)/* Controller is missing device caps. Use caps provided by host */#define SDHCI_QUIRK_MISSING_CAPS            (1<<27)/* Controller uses Auto CMD12 command to stop the transfer */#define SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12        (1<<28)/* Controller doesn't have HISPD bit field in HI-SPEED SD card */#define SDHCI_QUIRK_NO_HISPD_BIT            (1<<29)/* Controller treats ADMA descriptors with length 0000h incorrectly */#define SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC        (1<<30)/* The read-only detection via SDHCI_PRESENT_STATE register is unstable */#define SDHCI_QUIRK_UNSTABLE_RO_DETECT            (1<<31)
  • 癖好2(sdhci_host->quirks2)各个位意义如下:
#define SDHCI_QUIRK2_HOST_OFF_CARD_ON           (1<<0)#define SDHCI_QUIRK2_HOST_NO_CMD23          (1<<1)/* The system physically doesn't support 1.8v, even if the host does */#define SDHCI_QUIRK2_NO_1_8_V               (1<<2)#define SDHCI_QUIRK2_PRESET_VALUE_BROKEN        (1<<3)/* * Read Transfer Active/ Write Transfer Active may be not * de-asserted after end of transaction. Issue reset for DAT line. */#define SDHCI_QUIRK2_RDWR_TX_ACTIVE_EOT         (1<<4)/* * Slow interrupt clearance at 400KHz may cause * host controller driver interrupt handler to * be called twice. */#define SDHCI_QUIRK2_SLOW_INT_CLR           (1<<5)/* * If the base clock can be scalable, then there should be no further * clock dividing as the input clock itself will be scaled down to * required frequency. */#define SDHCI_QUIRK2_ALWAYS_USE_BASE_CLOCK      (1<<6)/* * Dont use the max_discard_to in sdhci driver so that the maximum discard * unit gets picked by the mmc queue. Otherwise, it takes a long time for * secure discard kind of operations to complete. */#define SDHCI_QUIRK2_USE_MAX_DISCARD_SIZE       (1<<7)/* * Ignore data timeout error for R1B commands as there will be no * data associated and the busy timeout value for these commands * could be lager than the maximum timeout value that controller * can handle. */#define SDHCI_QUIRK2_IGNORE_DATATOUT_FOR_R1BCMD     (1<<8)/* * The preset value registers are not properly initialized by * some hardware and hence preset value must not be enabled for * such controllers. */#define SDHCI_QUIRK2_BROKEN_PRESET_VALUE        (1<<9)/* * Some controllers define the usage of 0xF in data timeout counter * register (0x2E) which is actually a reserved bit as per * specification. */#define SDHCI_QUIRK2_USE_RESERVED_MAX_TIMEOUT       (1<<10)/* * This is applicable for controllers that advertize timeout clock * value in capabilities register (bit 5-0) as just 50MHz whereas the * base clock frequency is 200MHz. So, the controller internally * multiplies the value in timeout control register by 4 with the * assumption that driver always uses fixed timeout clock value from * capabilities register to calculate the timeout. But when the driver * uses SDHCI_QUIRK2_ALWAYS_USE_BASE_CLOCK base clock frequency is directly * controller by driver and it's rate varies upto max. 200MHz. This new quirk * will be used in such cases to avoid controller mulplication when timeout is * calculated based on the base clock. */#define SDHCI_QUIRK2_DIVIDE_TOUT_BY_4 (1 << 11)/* * Some SDHC controllers are unable to handle data-end bit error in * 1-bit mode of SDIO. */#define SDHCI_QUIRK2_IGN_DATA_END_BIT_ERROR             (1<<12)/* * Some SDHC controllers do not require data buffers alignment, skip * the bounce buffer logic when preparing data */#define SDHCI_QUIRK2_ADMA_SKIP_DATA_ALIGNMENT             (1<<13)/* Some controllers doesn't have have any LED control */#define SDHCI_QUIRK2_BROKEN_LED_CONTROL (1 << 14)/* Use reset workaround in case sdhci reset timeouts */#define SDHCI_QUIRK2_USE_RESET_WORKAROUND (1 << 15)
  • sdhci host的一些标识(sdhci_host->flags)如下:
#define SDHCI_USE_SDMA      (1<<0)  /* Host is SDMA capable */#define SDHCI_USE_ADMA      (1<<1)  /* Host is ADMA capable */#define SDHCI_REQ_USE_DMA   (1<<2)  /* Use DMA for this req. */#define SDHCI_DEVICE_DEAD   (1<<3)  /* Device unresponsive */#define SDHCI_SDR50_NEEDS_TUNING (1<<4) /* SDR50 needs tuning */#define SDHCI_NEEDS_RETUNING    (1<<5)  /* Host needs retuning */#define SDHCI_AUTO_CMD12    (1<<6)  /* Auto CMD12 support */#define SDHCI_AUTO_CMD23    (1<<7)  /* Auto CMD23 support */#define SDHCI_PV_ENABLED    (1<<8)  /* Preset value enabled */#define SDHCI_SDIO_IRQ_ENABLED  (1<<9)  /* SDIO irq enabled */#define SDHCI_HS200_NEEDS_TUNING (1<<10)    /* HS200 needs tuning */#define SDHCI_USING_RETUNING_TIMER (1<<11)  /* Host is using a retuning timer for the card */#define SDHCI_HS400_NEEDS_TUNING (1<<12)    /* HS400 needs tuning */#define SDHCI_USE_ADMA_64BIT     (1<<13)/* Host is 64-bit ADMA capable */

2、struct sdhci_ops结构体

sdhci core只是提供了一些接口和符合mmc core的操作集方法给对应的host driver使用。由于各个host的硬件有所差异,所以实际和硬件交互的驱动部分还是在host driver中实现。
所以sdhci core要求host提供标准的访问硬件的一些方法。而这些方法就被定义在了struct sdhci_ops结构体内部。
结构体如下:

struct sdhci_ops {#ifdef CONFIG_MMC_SDHCI_IO_ACCESSORS       // 表示host另外提供了一套访问寄存器的方法,没有定义的话,则说明使用通用的读写寄存器的方法    u32        (*read_l)(struct sdhci_host *host, int reg);    u16        (*read_w)(struct sdhci_host *host, int reg);    u8        (*read_b)(struct sdhci_host *host, int reg);    void        (*write_l)(struct sdhci_host *host, u32 val, int reg);    void        (*write_w)(struct sdhci_host *host, u16 val, int reg);    void        (*write_b)(struct sdhci_host *host, u8 val, int reg);#endif    void    (*set_clock)(struct sdhci_host *host, unsigned int clock);    // 设置时钟频率    int        (*enable_dma)(struct sdhci_host *host);    // 使能DMA    unsigned int    (*get_max_clock)(struct sdhci_host *host);    // 获取支持的最大时钟频率    unsigned int    (*get_min_clock)(struct sdhci_host *host);    // 获取支持的最小时钟频率    unsigned int    (*get_timeout_clock)(struct sdhci_host *host);    int        (*platform_bus_width)(struct sdhci_host *host, int width);      void (*platform_send_init_74_clocks)(struct sdhci_host *host,                         u8 power_mode);    unsigned int    (*get_ro)(struct sdhci_host *host);    // 获取    void    (*platform_reset_enter)(struct sdhci_host *host, u8 mask);    // 进入平台复位的方法    void    (*platform_reset_exit)(struct sdhci_host *host, u8 mask);    // 退出平台复位的方法    int    (*set_uhs_signaling)(struct sdhci_host *host, unsigned int uhs);    // 设置uhs方式    void    (*hw_reset)(struct sdhci_host *host);    // 硬件复位的方法    void    (*platform_suspend)(struct sdhci_host *host);    // 平台host的suspend方法    void    (*platform_resume)(struct sdhci_host *host);    // 平台host的resume方法    void    (*adma_workaround)(struct sdhci_host *host, u32 intmask);    void    (*platform_init)(struct sdhci_host *host);    // 平台host的初始化方法    void    (*check_power_status)(struct sdhci_host *host, u32 req_type);    // 检测总线的电源状态#define REQ_BUS_OFF    (1 << 0)#define REQ_BUS_ON    (1 << 1)#define REQ_IO_LOW    (1 << 2)#define REQ_IO_HIGH    (1 << 3)    int    (*execute_tuning)(struct sdhci_host *host, u32 opcode);    // 执行tuning操作的的方法    void    (*toggle_cdr)(struct sdhci_host *host, bool enable);    unsigned int    (*get_max_segments)(void);    void    (*platform_bus_voting)(struct sdhci_host *host, u32 enable);    // 平台总线投票的方法    void    (*disable_data_xfer)(struct sdhci_host *host);    void    (*dump_vendor_regs)(struct sdhci_host *host);    int    (*config_auto_tuning_cmd)(struct sdhci_host *host,                      bool enable,                      u32 type);    int    (*enable_controller_clock)(struct sdhci_host *host);    void    (*reset_workaround)(struct sdhci_host *host, u32 enable);};

这个结构体也就是host driver要实现的核心内容。

3、struct mmc_host_ops sdhci_ops

注意:这里的sdhci_ops是一个变量名,和上述的struct sdhci_ops不是同一个概念。搞不懂为什么这么命名,容易混淆。
sdhci core使用sdhci_ops作为sdhci host抽象出来的mmc host的操作集,所以其是一个struct mmc_host_ops结构体。
后续mmc core关于这个host的操作也都是基于这个操作集上实现的,包括使能host(enable方法)、禁用host(disable方法)、发送请求(request方法)。
具体参考《mmc core》系列。
具体实现如下,具体意义参考《mmc core(第二章)——数据结构和宏定义说明》:

static const struct mmc_host_ops sdhci_ops = {        // post_req和pre_req是为了实现异步请求处理而设置的        // 异步请求处理就是指,当另外一个异步请求还没有处理完成的时候,可以先准备另外一个异步请求而不必等待        // 具体参考《mmc core主模块》    .pre_req    = sdhci_pre_req,      .post_req   = sdhci_post_req,    .request    = sdhci_request,    // host处理mmc请求的方法,在mmc_start_request中会调用    .set_ios    = sdhci_set_ios,   // 设置host的总线的io setting    .get_cd     = sdhci_get_cd,   // 检测host的卡槽中card的插入状态    .get_ro     = sdhci_get_ro,  // 获取host上的card的读写属性    .hw_reset   = sdhci_hw_reset,  // 硬件复位    .enable_sdio_irq = sdhci_enable_sdio_irq,    .start_signal_voltage_switch    = sdhci_start_signal_voltage_switch,   // 切换信号电压的方法    .execute_tuning         = sdhci_execute_tuning,   // 执行tuning操作,为card选择一个合适的采样点    .card_event         = sdhci_card_event,    .card_busy  = sdhci_card_busy,   // 用于检测card是否处于busy状态    .enable     = sdhci_enable, // 使能host,当host被占用时(第一次调用mmc_claim_host)调用    .disable    = sdhci_disable,    // 禁用host,当host被释放时(第一次调用mmc_release_host)调用    .stop_request = sdhci_stop_request,   // 停止请求处理的方法    .get_xfer_remain = sdhci_get_xfer_remain,    .notify_load    = sdhci_notify_load,};

三、API总览

1、sdhci_host分配和释放相关

  • sdhci_alloc_host & sdhci_free_host
    由底层host driver调用。
    sdhci_alloc_host为host driver分配一个sdhci_host和mmc_host,并实现其初始化,以及sdhci_host和mmc_host的关联。
    sdhci_free_host则是用来释放一个sdhci_host。
    原型:struct sdhci_host *sdhci_alloc_host(struct device *dev, size_t priv_size)    参数说明:struct device *dev——》对应host的device结构体                    size_t priv_size——》要分配的sdhci_host的私有数据的长度,一般是平台自己定制的host的长度。    原型:void sdhci_free_host(struct sdhci_host *host)

2、sdhci_host的注册和卸载相关

  • sdhci_add_host & sdhci_remove_host
    由底层host driver调用。
    sdhci_add_host用于向sdhci core注册一个sdhci_host。会根据sdhci的寄存器以及部分标识设置其mmc_host,最终将mmc_host注册到mmc core中。
    因此,在调用sdhci_add_host之前,必须准备好sdhci的所有硬件环境。
    sdhci_free_host则用于从sdhci core中卸载一个sdhci_host,对应的mmc_host也会从mmc core中被卸载。
    原型:int sdhci_add_host(struct sdhci_host *host);    原型:void sdhci_remove_host(struct sdhci_host *host, int dead);

四、接口代码说明

1、sdhci_alloc_host

struct sdhci_host *sdhci_alloc_host(struct device *dev,    size_t priv_size){    struct mmc_host *mmc;    struct sdhci_host *host;    WARN_ON(dev == NULL);/* 实现mmc_host和sdhci_host的分配 */    mmc = mmc_alloc_host(sizeof(struct sdhci_host) + priv_size, dev);   // 分配一个struct mmc_host    // 分配mmc_host的同时也分配了sizeof(struct sdhci_host) + priv_size的私有数据空间,这部分就是作为sdhci_host及其私有数据使用的。    // 具体参考《mmc core——host模块说明》    if (!mmc)        return ERR_PTR(-ENOMEM);/* 实现mmc_host和sdhci_host的关联操作 */    host = mmc_priv(mmc);   // 将sdhci_host作为mmc_host的私有数据,mmc_host->private = sdhci_host    host->mmc = mmc;   // 关联sdhci_host和mmc_host,sdhci_host->mmc = mmc_host/* sdhci_host的锁的初始化工作 */    spin_lock_init(&host->lock);   // 初始化sdhci_host 的占有锁    mutex_init(&host->ios_mutex);   // 初始化sdhci_host 设置io setting的互斥锁    return host;   // 将struct sdhci_host 返回}

综上,
mmc_host->private = sdhci_host
sdhci_host->mmc = mmc_host

2、sdhci_add_host

(0)底层传上来的sdhci_host中应该包含什么信息

  • sdhci的寄存器的映射过后的基地址(sdhci_host->ioaddr)
  • sdhci的癖好quirks、quirks2(sdhci_host->quirks,sdhci_host->quirks2)
  • sdhci的中断号(sdhci_host->irq)
  • host提供给sdhci core用来操作硬件的操作集(sdhci_host->ops)

(1)主要完成工作如下:

  • sdhci host复位
    调用sdhci_reset

  • 读取该host的sdhci的信息(从sdhci相关寄存器中读取)并设置sdhci_host相关成员

    • 版本(sdhci_host->version)
      从SDHCI_HOST_VERSION寄存器中读取
    • 支持的属性
      从SDHCI_CAPABILITIES、SDHCI_CAPABILITIES_1寄存器中读取
    • 标识(sdhci_host->version)
      根据sdhci_host->quirks和quirks2来设置
    • 支持的最大频率和倍频(sdhci_host->max_clk & sdhci_host->clk_mul)
      对应SDHCI_CAPABILITIES寄存器中的SDHCI_CLOCK_BASE_SHIFT位
      对应SDHCI_CAPABILITIES寄存器中的SDHCI_CLOCK_MUL_SHIFT位
    • sdhci使用的regulator(sdhci_host->vqmmc)
      从节点中的命名为”vmmc”的regulator属性中获取
    • card插入状态发生变化时调用的tasklet(sdhci_host->card_tasklet)
      设置为sdhci_tasklet_card
    • 请求处理完成时调用的tasklet(sdhci_host->finish_tasklet)
      设置为sdhci_tasklet_finish
    • 请求的处理超时定时器(sdhci_host->timer)
      设置为sdhci_timeout_timer
    • qos处理的工作(sdhci_host->pm_qos_work)
      设置为sdhci_pm_qos_remove_work
  • 设置mmc_host的相关成员

    • 操作集(mmc_host->ops)
      设置为sdhci_ops,上面已经说明过了
    • 最大频率(mmc_host->f_max)
      用sdhci_host->max_clk的值来设置
    • host的属性(mmc_host->caps & mmc_host->caps2)
      通过sdhci_host->quirks和quirks2、以及SDHCI_CAPABILITIES、SDHCI_CAPABILITIES_1寄存器中的属性进行设置
    • 各个电压下的最大电流值(mmc_host->max_current_330 & mmc_host->max_current_300 & mmc_host->max_current_180)
      从SDHCI_MAX_CURRENT寄存器中读取
    • 可用电压(mmc->ocr_avail & mmc->ocr_avail_sdio & mmc->ocr_avail_sd & mmc->ocr_avail_mmc)
      从SDHCI_CAPABILITIES寄存器中的SDHCI_CAN_VDD_330、SDHCI_CAN_VDD_300、SDHCI_CAN_VDD_180位获取
    • 一些块和段size的设置
  • 中断的注册
    将sdhci_host的中断处理函数注册为sdhci_irq

  • sdhci host初始化
    调用sdhci_init
  • 注册mmc_host到mmc core中
    调用mmc_add_host
  • 使能card插入状态的检测
    调用sdhci_enable_card_detection

(2)代码如下:

int sdhci_add_host(struct sdhci_host *host){// 以下变量要注意区分// host是指要注册的sdhci host// mmc是指要注册到mmc subsystem的host,封装在sdhci host中    struct mmc_host *mmc;    u32 caps[2] = {0, 0};    u32 max_current_caps;    unsigned int ocr_avail;    int ret;    WARN_ON(host == NULL);    if (host == NULL)        return -EINVAL;    mmc = host->mmc;      // 获取struct mmc_host/* 执行复位操作 */    sdhci_reset(host, SDHCI_RESET_ALL);        // 执行reset操作,会调用到sdhci_host->ops->platform_reset_enter,msm并没有实现这个方法/********************************* 获取sdhci信息并设置sdhci_host的相应成员***********************//* 获取sdhci controller版本号 */    host->version = sdhci_readw(host, SDHCI_HOST_VERSION);    host->version = (host->version & SDHCI_SPEC_VER_MASK) >> SDHCI_SPEC_VER_SHIFT;        // 获取sdhci host的硬件版本号/* 获取sdhci controller支持的属性 */    caps[0] = (host->quirks & SDHCI_QUIRK_MISSING_CAPS) ? host->caps : sdhci_readl(host, SDHCI_CAPABILITIES);        // SDHCI_QUIRK_MISSING_CAPS:Controller is missing device caps. Use caps provided by host         // sdhci控制器没有devices属性的话,由底层host提供,否则,从sdhci controller的SDHCI_CAPABILITIES读取属性    if (host->version >= SDHCI_SPEC_300)        caps[1] = (host->quirks & SDHCI_QUIRK_MISSING_CAPS) ?host->caps1 : sdhci_readl(host, SDHCI_CAPABILITIES_1);        // 从sdhci controller的SDHCI_CAPABILITIES_1读取属性/* 设置sdhci_host->flags中和DMA相关的flag */    if (host->quirks & SDHCI_QUIRK_FORCE_DMA)        host->flags |= SDHCI_USE_SDMA;    else if (!(caps[0] & SDHCI_CAN_DO_SDMA))        DBG("Controller doesn't have SDMA capability\n");    else        host->flags |= SDHCI_USE_SDMA;        // SDHCI_QUIRK_FORCE_DMA : Controller has bad caps bits, but really supports DMA        // 设置sdhci_host->flags中的SDHCI_USE_SDMA标识        //............................    if (host->flags & SDHCI_USE_ADMA) {                // sdhci_host ->adma_max_desc                // sdhci_host ->adma_desc_line_sz                // sdhci_host ->align_bytes                // sdhci_host ->adma_desc_sz                // sdhci_host ->align_buf_sz                 // sdhci_host ->adma_desc                // sdhci_host ->align_buffer    }    host->next_data.cookie = 1;/* 获取sdhci controller支持的最大频率以及倍频 */    if (host->version >= SDHCI_SPEC_300)        host->max_clk = (caps[0] & SDHCI_CLOCK_V3_BASE_MASK)            >> SDHCI_CLOCK_BASE_SHIFT;     // 从sdhci controller的SDHCI_CLOCK_V3_BASE_MASK读取最大clock(单位是MHZ)    else        host->max_clk = (caps[0] & SDHCI_CLOCK_BASE_MASK)            >> SDHCI_CLOCK_BASE_SHIFT;    host->max_clk *= 1000000;(转化为hz)        // 设置sdhci_host->max_clk    sdhci_update_power_policy(host, SDHCI_PERFORMANCE_MODE_INIT);        // 设置sdhci_host->power_policy为SDHCI_PERFORMANCE_MODE_INIT    if (host->max_clk == 0 || host->quirks & SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN) {        host->max_clk = host->ops->get_max_clock(host);   // 调用sdhci_host->ops->get_max_clock获得最大时钟    }    host->clk_mul = (caps[1] & SDHCI_CLOCK_MUL_MASK) >> SDHCI_CLOCK_MUL_SHIFT;    if (host->clk_mul)        host->clk_mul += 1;        // 设置sdhci_host->clk_mul,clock的倍频实行/*************************** 以下对mmc_host和sdhci_host进行设置操作 ***************************//* 以下设置mmc_host,ops、f_max、f_min */    mmc->ops = &sdhci_ops;   // 设置mmc_host的操作集为sdhci_ops    mmc->f_max = host->max_clk;   // 设置最大时钟频率mmc_host->f_max    if (host->ops->get_min_clock)        mmc->f_min = host->ops->get_min_clock(host);   // 调用sdhci_host->ops->get_min_clock获得最小时钟频率mmc_host->f_min    host->timeout_clk = (caps[0] & SDHCI_TIMEOUT_CLK_MASK) >> SDHCI_TIMEOUT_CLK_SHIFT;        // 从sdhci controller的SDHCI_TIMEOUT_CLK_MASK读取最大timeout        // 设置到sdhci_host->timeout_clk    if (host->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK)        host->timeout_clk = mmc->f_max / 1000;    if (!(host->quirks2 & SDHCI_QUIRK2_USE_MAX_DISCARD_SIZE))        mmc->max_discard_to = (1 << 27) / host->timeout_clk;        // 设置mmc_host->max_discard_to/* 设置mmc_host->caps,也就是属性 */    mmc->caps |= MMC_CAP_SDIO_IRQ | MMC_CAP_ERASE | MMC_CAP_CMD23;    if (!(host->quirks & SDHCI_QUIRK_FORCE_1_BIT_DATA))        mmc->caps |= MMC_CAP_4_BIT_DATA;    if (host->quirks2 & SDHCI_QUIRK2_HOST_NO_CMD23)        mmc->caps &= ~MMC_CAP_CMD23;    if (caps[0] & SDHCI_CAN_DO_HISPD)        mmc->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED;    if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) &&        !(host->mmc->caps & MMC_CAP_NONREMOVABLE) &&        (mmc_gpio_get_cd(host->mmc) < 0) &&        !(host->mmc->caps2 & MMC_CAP2_NONHOTPLUG))        mmc->caps |= MMC_CAP_NEEDS_POLL;/* 获取vqmmc regulater并使能 */    /* If vqmmc regulator and no 1.8V signalling, then there's no UHS */    host->vqmmc = regulator_get(mmc_dev(mmc), "vqmmc");    if (IS_ERR_OR_NULL(host->vqmmc)) {            ....    } else {        ret = regulator_enable(host->vqmmc);        if (!regulator_is_supported_voltage(host->vqmmc, 1700000,1950000))            caps[1] &= ~(SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_DDR50);    }    if (host->quirks2 & SDHCI_QUIRK2_NO_1_8_V)        caps[1] &= ~(SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_DDR50);/* 设置mmc_host->caps和传输模式相关的属性 */    /* Any UHS-I mode in caps implies SDR12 and SDR25 support. */    if (caps[1] & (SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 |               SDHCI_SUPPORT_DDR50))        mmc->caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25;    /* SDR104 supports also implies SDR50 support */    if (caps[1] & SDHCI_SUPPORT_SDR104)        mmc->caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50;    else if (caps[1] & SDHCI_SUPPORT_SDR50)        mmc->caps |= MMC_CAP_UHS_SDR50;    if (caps[1] & SDHCI_SUPPORT_DDR50)        mmc->caps |= MMC_CAP_UHS_DDR50;/* 设置sdhci_host->flags中和tuning相关的flag */    /* Does the host need tuning for SDR50? */    if (caps[1] & SDHCI_USE_SDR50_TUNING)        host->flags |= SDHCI_SDR50_NEEDS_TUNING;    /* Does the host need tuning for HS200? */    if (mmc->caps2 & MMC_CAP2_HS200)        host->flags |= SDHCI_HS200_NEEDS_TUNING;    /* Does the host need tuning for HS400? */    if (mmc->caps2 & MMC_CAP2_HS400)        host->flags |= SDHCI_HS400_NEEDS_TUNING;/* 设置mmc_host->caps和驱动类型相关的属性 */    /* Driver Type(s) (A, C, D) supported by the host */    if (caps[1] & SDHCI_DRIVER_TYPE_A)        mmc->caps |= MMC_CAP_DRIVER_TYPE_A;    if (caps[1] & SDHCI_DRIVER_TYPE_C)        mmc->caps |= MMC_CAP_DRIVER_TYPE_C;    if (caps[1] & SDHCI_DRIVER_TYPE_D)        mmc->caps |= MMC_CAP_DRIVER_TYPE_D;/* 获取sdhci controller的tuning计数(tuning_count 、tuning_mode )*/    host->tuning_count = (caps[1] & SDHCI_RETUNING_TIMER_COUNT_MASK) >>                  SDHCI_RETUNING_TIMER_COUNT_SHIFT;    if (host->tuning_count)        host->tuning_count = 1 << (host->tuning_count - 1);    host->tuning_mode = (caps[1] & SDHCI_RETUNING_MODE_MASK) >> SDHCI_RETUNING_MODE_SHIFT;    ocr_avail = 0;/* 获取vmmc regulater,设置caps[0]支持的电压值 */    host->vmmc = regulator_get(mmc_dev(mmc), "vmmc");#ifdef CONFIG_REGULATOR    /*     * Voltage range check makes sense only if regulator reports     * any voltage value.     */    if (host->vmmc && regulator_get_voltage(host->vmmc) > 0) {        ret = regulator_is_supported_voltage(host->vmmc, 2700000,            3600000);        if ((ret <= 0) || (!(caps[0] & SDHCI_CAN_VDD_330)))            caps[0] &= ~SDHCI_CAN_VDD_330;        if ((ret <= 0) || (!(caps[0] & SDHCI_CAN_VDD_300)))            caps[0] &= ~SDHCI_CAN_VDD_300;        ret = regulator_is_supported_voltage(host->vmmc, 1700000,            1950000);        if ((ret <= 0) || (!(caps[0] & SDHCI_CAN_VDD_180)))            caps[0] &= ~SDHCI_CAN_VDD_180;    }#endif /* CONFIG_REGULATOR *//* 设置各个电压下的最大电流值(max_current_330、max_current_330 、max_current_180 )*//* 设置可用电压域 */    max_current_caps = sdhci_readl(host, SDHCI_MAX_CURRENT);    if (!max_current_caps && host->vmmc) {        u32 curr = regulator_get_current_limit(host->vmmc);                //....................    }    if (caps[0] & SDHCI_CAN_VDD_330) {        ocr_avail |= MMC_VDD_32_33 | MMC_VDD_33_34;        mmc->max_current_330 = ((max_current_caps &                   SDHCI_MAX_CURRENT_330_MASK) >>                   SDHCI_MAX_CURRENT_330_SHIFT) *                   SDHCI_MAX_CURRENT_MULTIPLIER;    }        //.........    mmc->ocr_avail = ocr_avail;    mmc->ocr_avail_sdio = ocr_avail;        // ....../*********************************** sdhci的初始化工作**************************************//* 初始化sdhci工作过程中会使用到的tasklet */    tasklet_init(&host->card_tasklet, sdhci_tasklet_card, (unsigned long)host);      // host上发生card插入或者拔出时调用    tasklet_init(&host->finish_tasklet, sdhci_tasklet_finish, (unsigned long)host);   // 完成一个request时调用    setup_timer(&host->timer, sdhci_timeout_timer, (unsigned long)host); // command的超时定时器/* 初始化qos处理的工作 */    INIT_DELAYED_WORK(&host->pm_qos_work, sdhci_pm_qos_remove_work);/* 中断注册和使能 */    ret = request_irq(host->irq, sdhci_irq, IRQF_SHARED,mmc_hostname(mmc), host);    host->irq_enabled = true;/* 对该sdhci controller进行初始化 */    sdhci_init(host, 0);    mmiowb();/* sdhci关于qos的请求和操作的设置 */    if (host->host_qos[SDHCI_QOS_READ_WRITE].cpu_dma_latency_us) {            // .........    }/*********************************** 将mmc_host注册到mmc subsystem中 *******************************/    mmc_add_host(mmc);/*********************************** 开始使能sdhci和并且开始检测card状态******************************/    sdhci_enable_card_detection(host);    return 0;}

重点关注如下几个部分:

1)sdhci_reset(host, SDHCI_RESET_ALL);(2)mmc->ops = &sdhci_ops;   // 设置mmc_host的操作集为sdhci_ops3)host->vmmc = regulator_get(mmc_dev(mmc), "vmmc");(4)tasklet_init(&host->card_tasklet, sdhci_tasklet_card, (unsigned long)host); // host上发生card插入或者拔出时调用5)tasklet_init(&host->finish_tasklet, sdhci_tasklet_finish, (unsigned long)host); // 完成一个request时调用的tasklet6)ret = request_irq(host->irq, sdhci_irq, IRQF_SHARED,mmc_hostname(mmc), host);(7)sdhci_init(host, 0);    // 软初始化host8)sdhci_enable_card_detection(host);    // 开始使能card插入状态的检测

五、sdhci core内部代码简单说明

1、sdhci_reset & sdhci_init & sdhci_enable_card_detection

  • sdhci_reset
    由sdhci core内部调用,用于复位host。
  • sdhci_init
    由sdhci core内部调用,用于初始化host
  • sdhci_enable_card_detection
    由sdhci core内部调用,使能card插入状态的检测,主要是设置SDHCI_INT_ENABLE、SDHCI_SIGNAL_ENABLE寄存器

2、sdhci_irq

sdhci_irq是sdhci host的中断的处理函数。

  • 可能造成中断的事件如下:

    • SDHCI_INT_CARD_INSERT & SDHCI_INT_CARD_REMOVE
      检测到card插入或者移除产生了中断
    • SDHCI_INT_CMD_MASK
      命令处理产生的相关中断
    • SDHCI_INT_DATA_MASK
      数据处理产生的相关中断
    • SDHCI_INT_BUS_POWER
      总线电源状态发生变化产生的中断
    • SDHCI_INT_CARD_INT
      card发出的中断
  • 对应代码如下:

static irqreturn_t sdhci_irq(int irq, void *dev_id){    irqreturn_t result;    struct sdhci_host *host = dev_id;    u32 intmask, unexpected = 0;    int cardint = 0, max_loops = 16;    spin_lock(&host->lock); /* 从SDHCI_INT_STATUS寄存器中读取中断状态 */    intmask = sdhci_readl(host, SDHCI_INT_STATUS);    // 从SDHCI_INT_STATUS寄存器中读取中断状态/* 确认是否有中断产生 */    if (!intmask || intmask == 0xffffffff) {        result = IRQ_NONE;        goto out;    }again:    DBG("*** %s got interrupt: 0x%08x\n",        mmc_hostname(host->mmc), intmask); /* 以下是对card插入或者拔出的中断进行处理 */    if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) {        u32 present = sdhci_readl(host, SDHCI_PRESENT_STATE) &                  SDHCI_CARD_PRESENT;        sdhci_mask_irqs(host, present ? SDHCI_INT_CARD_INSERT :                        SDHCI_INT_CARD_REMOVE);        sdhci_unmask_irqs(host, present ? SDHCI_INT_CARD_REMOVE :                          SDHCI_INT_CARD_INSERT);        sdhci_writel(host, intmask & (SDHCI_INT_CARD_INSERT |                 SDHCI_INT_CARD_REMOVE), SDHCI_INT_STATUS);    // 重置这两个中断位        intmask &= ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE);        tasklet_schedule(&host->card_tasklet);    // 执行host->card_tasklet,也就是sdhci_tasklet_card进行处理,后面说明    } /* 以下是sdhci处理命令产生的中断进行处理,不一定是出错 */    if (intmask & SDHCI_INT_CMD_MASK) {        if (intmask & SDHCI_INT_AUTO_CMD_ERR)            host->auto_cmd_err_sts = sdhci_readw(host,                    SDHCI_AUTO_CMD_ERR);        sdhci_writel(host, intmask & SDHCI_INT_CMD_MASK,            SDHCI_INT_STATUS);        if ((host->quirks2 & SDHCI_QUIRK2_SLOW_INT_CLR) &&            (host->clock <= 400000))            udelay(40);        sdhci_cmd_irq(host, intmask & SDHCI_INT_CMD_MASK);    // 在sdhci_cmd_irq中会执行host->finish_tasklet, 也就是sdhci_tasklet_finish来通知上层。后面说明。    } /* 以下是sdhci处理数据产生的中断进行处理,不一定是出错 */    if (intmask & SDHCI_INT_DATA_MASK) {        sdhci_writel(host, intmask & SDHCI_INT_DATA_MASK,            SDHCI_INT_STATUS);        if ((host->quirks2 & SDHCI_QUIRK2_SLOW_INT_CLR) &&            (host->clock <= 400000))            udelay(40);        sdhci_data_irq(host, intmask & SDHCI_INT_DATA_MASK); // 在sdhci_data_irq中会执行host->finish_tasklet, 也就是sdhci_tasklet_finish来通知上层。    }    intmask &= ~(SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK);    intmask &= ~SDHCI_INT_ERROR; /* 以下是对总线电源状态发生变化的中断的处理 */    if (intmask & SDHCI_INT_BUS_POWER) {        pr_err("%s: Card is consuming too much power!\n",            mmc_hostname(host->mmc));        sdhci_writel(host, SDHCI_INT_BUS_POWER, SDHCI_INT_STATUS);    }    intmask &= ~SDHCI_INT_BUS_POWER;    if (intmask & SDHCI_INT_CARD_INT)        cardint = 1;    intmask &= ~SDHCI_INT_CARD_INT;    if (intmask) {        unexpected |= intmask;        sdhci_writel(host, intmask, SDHCI_INT_STATUS);    }    result = IRQ_HANDLED;/* 可能不止有其他事件导致中断的产生,重复检测 */    intmask = sdhci_readl(host, SDHCI_INT_STATUS);    if (intmask && --max_loops)        goto again;out:    spin_unlock(&host->lock);    return result;}

3、sdhci_tasklet_card

  • 简单流程说明:

    • 当进行卡插入或者拔出的时候,sdhci controller(硬件)会检测到其状态发生变化
    • sdhci controller(硬件)会设置中断状态寄存器中SDHCI_INT_CARD_INSERT或者SDHCI_INT_CARD_REMOVE位
    • sdhci controller(硬件)触发中段
    • sdhci core中的中断处理函数sdhci_irq被调用(软件)
    • sdhci_irq(软件)去判断出中断状态寄存器中SDHCI_INT_CARD_INSERT或者SDHCI_INT_CARD_REMOVE位被设置
    • sdhci_irq执行host->card_tasklet,也就是我们这里的sdhci_tasklet_card进行相应处理。
  • sdhci_tasklet_card实现如下:

static void sdhci_tasklet_card(unsigned long param){    struct sdhci_host *host = (struct sdhci_host*)param;   // 提取sdhci_host结构体    sdhci_card_event(host->mmc);   // 发送事件,如果此时有mmc_request正在处理,则会复位数据线和命令线,终止mmc_request处理    mmc_detect_change(host->mmc, msecs_to_jiffies(200));            // 调用mmc_detect_change通知mmc core卡槽状态发生了变化,剩下的就是mmc core的工作了        // mmc_detect_change实现具体参考《mmc core主模块说明》}

4、sdhci_tasklet_finish

当sdhci controller处理完一个cmd(data)或者处理过程中出现错误,都会产生SDHCI_INT_CMD_MASK、SDHCI_INT_DATA_MASK中断。
在sdhci_irq中会调用sdhci_cmd_irq、sdhci_data_irq进行处理,但是最终都会执行host->finish_tasklet,也就是sdhci_tasklet_finish来通知上层。
其代码实现如下:

static void sdhci_tasklet_finish(unsigned long param){        //......过滤掉前面一些根据情况决定的复位操作    mmc_request_done(host->mmc, mrq);           // 调用mmc_request_done来通知mmc core 说mrq这个mmc request已经处理完成,至于处理完成的结果由上层自己解决        // mmc_request_done实现具体参考《mmc core主模块说明》    sdhci_runtime_pm_put(host);}

5、struct mmc_host_ops sdhci_ops各个方法简单说明

static const struct mmc_host_ops sdhci_ops = {        // post_req和pre_req是为了实现异步请求处理而设置的        // 异步请求处理就是指,当另外一个异步请求还没有处理完成的时候,可以先准备另外一个异步请求而不必等待        // 具体参考《mmc core主模块》    .pre_req    = sdhci_pre_req,     .post_req    = sdhci_post_req,    .request    = sdhci_request,    // host处理mmc请求的方法,在mmc_start_request中会调用    .set_ios    = sdhci_set_ios,   // 设置host的总线的io setting    .get_cd        = sdhci_get_cd,   // 检测host的卡槽中card的插入状态    .get_ro        = sdhci_get_ro,  // 获取host上的card的读写属性    .hw_reset    = sdhci_hw_reset,  // 硬件复位    .enable_sdio_irq = sdhci_enable_sdio_irq,    .start_signal_voltage_switch    = sdhci_start_signal_voltage_switch,   // 切换信号电压的方法    .execute_tuning            = sdhci_execute_tuning,   // 执行tuning操作,为card选择一个合适的采样点    .card_event            = sdhci_card_event,    .card_busy    = sdhci_card_busy,   // 用于检测card是否处于busy状态    .enable        = sdhci_enable, // 使能host,当host被占用时(第一次调用mmc_claim_host)调用    .disable    = sdhci_disable,    // 禁用host,当host被释放时(第一次调用mmc_release_host)调用    .stop_request = sdhci_stop_request,   // 停止请求处理的方法    .get_xfer_remain = sdhci_get_xfer_remain,    .notify_load    = sdhci_notify_load,};
0 0