奇异值分解SVD

来源:互联网 发布:windows经典主题 编辑:程序博客网 时间:2024/05/29 16:14

       奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,和 特征值分解 有一定的关联,作用都在于将矩阵分解成 多个矩阵的乘积,从而方便进行数据的拆分,实现数据的投影或者降维。

       从数学的角度来看,特征值分解奇异值分解 都是给一个矩阵(线性变换)找一组特殊的基

       我们 先从特征值分解层面来引入问题:

● 特征值分解

       特征值分解 是基于方阵来讲的,方阵 A 对应特征向量 v,v对应的 特征值 λ,描述为:

        

       则 方阵A的 特征值分解形式为:

        

       其中,Q对应方阵A 的特征向量组成的矩阵,Σ 是对角矩阵,对角线元素即为 特征值(从大到小排列),实际上我们认为 Q 就是这样一组基,原方阵A在这组基上的投影,而对角阵 就代表了在这组基上的影响指数,大的特征值 影响较大,小的特征值可以忽略,这就为实现PCA降维方法提供了基础。

● 奇异值分解

       特征值分解 有一个限制条件,那就是 矩阵A 必须为方阵,那么针对待分解矩阵 不是方阵的情况,该如何处理呢?

       这就是 本节要讲的任意矩阵分解的方法,针对 任意矩阵 A(m*n),奇异值分解:

        

       其中,U是一个m*m的方阵(也称左奇异向量),VT是一个n*n的矩阵(也称右奇异向量),Σ 是一个m*n的矩阵(除了对角线的元素都是0,对角线上的元素称为奇异值)。

       从数学上看,表示我们找到了U和VT这样两组基,并且这两组基正交。

       

参考代码(来自于Numerical Recipes in C):

/*******************************************************************************Singular value decomposition program, svdcmp, from "Numerical Recipes in C"(Cambridge Univ. Press) by W.H. Press, S.A. Teukolsky, W.T. Vetterling,and B.P. Flannery*******************************************************************************/#include <stdlib.h>#include <stdio.h>#include <math.h>#define NR_END 1#define FREE_ARG char*#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))static double dmaxarg1,dmaxarg2;#define DMAX(a,b) (dmaxarg1=(a),dmaxarg2=(b),(dmaxarg1) > (dmaxarg2) ? (dmaxarg1) : (dmaxarg2))static int iminarg1,iminarg2;#define IMIN(a,b) (iminarg1=(a),iminarg2=(b),(iminarg1) < (iminarg2) ? (iminarg1) : (iminarg2))double **dmatrix(int nrl, int nrh, int ncl, int nch)/* allocate a double matrix with subscript range m[nrl..nrh][ncl..nch] */{int i,nrow=nrh-nrl+1,ncol=nch-ncl+1;double **m;/* allocate pointers to rows */m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));m += NR_END;m -= nrl;/* allocate rows and set pointers to them */m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));m[nrl] += NR_END;m[nrl] -= ncl;for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;/* return pointer to array of pointers to rows */return m;}double *dvector(int nl, int nh)/* allocate a double vector with subscript range v[nl..nh] */{double *v;v=(double *)malloc((size_t) ((nh-nl+1+NR_END)*sizeof(double)));return v-nl+NR_END;}void free_dvector(double *v, int nl, int nh)/* free a double vector allocated with dvector() */{free((FREE_ARG) (v+nl-NR_END));}double pythag(double a, double b)/* compute (a2 + b2)^1/2 without destructive underflow or overflow */{double absa,absb;absa=fabs(a);absb=fabs(b);if (absa > absb) return absa*sqrt(1.0+(absb/absa)*(absb/absa));else return (absb == 0.0 ? 0.0 : absb*sqrt(1.0+(absa/absb)*(absa/absb)));}/******************************************************************************/void svdcmp(double **a, int m, int n, double w[], double **v)/*******************************************************************************Given a matrix a[1..m][1..n], this routine computes its singular valuedecomposition, A = U.W.VT.  The matrix U replaces a on output.  The diagonalmatrix of singular values W is output as a vector w[1..n].  The matrix V (notthe transpose VT) is output as v[1..n][1..n].*******************************************************************************/{int flag,i,its,j,jj,k,l,nm;double anorm,c,f,g,h,s,scale,x,y,z,*rv1;rv1=dvector(1,n);g=scale=anorm=0.0; /* Householder reduction to bidiagonal form */for (i=1;i<=n;i++) {l=i+1;rv1[i]=scale*g;g=s=scale=0.0;if (i <= m) {for (k=i;k<=m;k++) scale += fabs(a[k][i]);if (scale) {for (k=i;k<=m;k++) {a[k][i] /= scale;s += a[k][i]*a[k][i];}f=a[i][i];g = -SIGN(sqrt(s),f);h=f*g-s;a[i][i]=f-g;for (j=l;j<=n;j++) {for (s=0.0,k=i;k<=m;k++) s += a[k][i]*a[k][j];f=s/h;for (k=i;k<=m;k++) a[k][j] += f*a[k][i];}for (k=i;k<=m;k++) a[k][i] *= scale;}}w[i]=scale *g;g=s=scale=0.0;if (i <= m && i != n) {for (k=l;k<=n;k++) scale += fabs(a[i][k]);if (scale) {for (k=l;k<=n;k++) {a[i][k] /= scale;s += a[i][k]*a[i][k];}f=a[i][l];g = -SIGN(sqrt(s),f);h=f*g-s;a[i][l]=f-g;for (k=l;k<=n;k++) rv1[k]=a[i][k]/h;for (j=l;j<=m;j++) {for (s=0.0,k=l;k<=n;k++) s += a[j][k]*a[i][k];for (k=l;k<=n;k++) a[j][k] += s*rv1[k];}for (k=l;k<=n;k++) a[i][k] *= scale;}}anorm = DMAX(anorm,(fabs(w[i])+fabs(rv1[i])));}for (i=n;i>=1;i--) { /* Accumulation of right-hand transformations. */if (i < n) {if (g) {for (j=l;j<=n;j++) /* Double division to avoid possible underflow. */v[j][i]=(a[i][j]/a[i][l])/g;for (j=l;j<=n;j++) {for (s=0.0,k=l;k<=n;k++) s += a[i][k]*v[k][j];for (k=l;k<=n;k++) v[k][j] += s*v[k][i];}}for (j=l;j<=n;j++) v[i][j]=v[j][i]=0.0;}v[i][i]=1.0;g=rv1[i];l=i;}for (i=IMIN(m,n);i>=1;i--) { /* Accumulation of left-hand transformations. */l=i+1;g=w[i];for (j=l;j<=n;j++) a[i][j]=0.0;if (g) {g=1.0/g;for (j=l;j<=n;j++) {for (s=0.0,k=l;k<=m;k++) s += a[k][i]*a[k][j];f=(s/a[i][i])*g;for (k=i;k<=m;k++) a[k][j] += f*a[k][i];}for (j=i;j<=m;j++) a[j][i] *= g;} else for (j=i;j<=m;j++) a[j][i]=0.0;++a[i][i];}for (k=n;k>=1;k--) { /* Diagonalization of the bidiagonal form. */for (its=1;its<=30;its++) {flag=1;for (l=k;l>=1;l--) { /* Test for splitting. */nm=l-1; /* Note that rv1[1] is always zero. */if ((double)(fabs(rv1[l])+anorm) == anorm) {flag=0;break;}if ((double)(fabs(w[nm])+anorm) == anorm) break;}if (flag) {c=0.0; /* Cancellation of rv1[l], if l > 1. */s=1.0;for (i=l;i<=k;i++) {f=s*rv1[i];rv1[i]=c*rv1[i];if ((double)(fabs(f)+anorm) == anorm) break;g=w[i];h=pythag(f,g);w[i]=h;h=1.0/h;c=g*h;s = -f*h;for (j=1;j<=m;j++) {y=a[j][nm];z=a[j][i];a[j][nm]=y*c+z*s;a[j][i]=z*c-y*s;}}}z=w[k];if (l == k) { /* Convergence. */if (z < 0.0) { /* Singular value is made nonnegative. */w[k] = -z;for (j=1;j<=n;j++) v[j][k] = -v[j][k];}break;}if (its == 30) printf("no convergence in 30 svdcmp iterations\n");x=w[l]; /* Shift from bottom 2-by-2 minor. */nm=k-1;y=w[nm];g=rv1[nm];h=rv1[k];f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y);g=pythag(f,1.0);f=((x-z)*(x+z)+h*((y/(f+SIGN(g,f)))-h))/x;c=s=1.0; /* Next QR transformation: */for (j=l;j<=nm;j++) {i=j+1;g=rv1[i];y=w[i];h=s*g;g=c*g;z=pythag(f,h);rv1[j]=z;c=f/z;s=h/z;f=x*c+g*s;g = g*c-x*s;h=y*s;y *= c;for (jj=1;jj<=n;jj++) {x=v[jj][j];z=v[jj][i];v[jj][j]=x*c+z*s;v[jj][i]=z*c-x*s;}z=pythag(f,h);w[j]=z; /* Rotation can be arbitrary if z = 0. */if (z) {z=1.0/z;c=f*z;s=h*z;}f=c*g+s*y;x=c*y-s*g;for (jj=1;jj<=m;jj++) {y=a[jj][j];z=a[jj][i];a[jj][j]=y*c+z*s;a[jj][i]=z*c-y*s;}}rv1[l]=0.0;rv1[k]=f;w[k]=x;}}free_dvector(rv1,1,n);}
2 0
原创粉丝点击