Deep learning:三十七(Deep&…

来源:互联网 发布:画橙光立绘用什么软件 编辑:程序博客网 时间:2024/06/06 01:35

Deeplearning:三十七(Deep learning中的优化方法)

 

  内容:

  本文主要是参考论文:On optimization methods for deeplearning,文章内容主要是笔记SGD(随机梯度下降),LBFGS(受限的BFGS),CG(共轭梯度法)三种常见优化算法的在deeplearning体系中的性能。下面是一些读完的笔记。

  SGD优点:实现简单,当训练样本足够多时优化速度非常快。

  SGD缺点:需要人为调整很多参数,比如学习率,收敛准则等。另外,它是序列的方法,不利于GPU并行或分布式处理。

  各种deep learning中常见方法(比如说Autoencoder,RBM,DBN,ICA,Sparsecoding)的区别是:目标函数形式不同。这其实才是最本质的区别,由于目标函数的不同导致了对其优化的方法也可能会不同,比如说RBM中目标函数跟网络能量有关,采用CD优化的,而Autoencoder目标函数为理论输出和实际输出的MSE,由于此时的目标函数的偏导可以直接被计算,所以可以用LBFGS,CG等方法优化,其它的类似。所以不能单从网络的结构来判断其属于Deeplearning中的哪种方法,比如说我单独给定64-100的2层网络,你就无法知道它属于deeplearning中的哪一种方法,因为这个网络既可以用RBM也可以用Autoencoder来训练。

  作者通过实验得出的结论是:不同的优化算法有不同的优缺点,适合不同的场合,比如LBFGS算法在参数的维度比较低(一般指小于10000维)时的效果要比SGD(随机梯度下降)和CG(共轭梯度下降)效果好,特别是带有convolution的模型。而针对高维的参数问题,CG的效果要比另2种好。也就是说一般情况下,SGD的效果要差一些,这种情况在使用GPU加速时情况一样,即在GPU上使用LBFGS和CG时,优化速度明显加快,而SGD算法优化速度提高很小。在单核处理器上,LBFGS的优势主要是利用参数之间的2阶近视特性来加速优化,而CG则得得益于参数之间的共轭信息,需要计算器Hessian矩阵。

  不过当使用一个大的minibatch且采用线搜索的话,SGD的优化性能也会提高。

  在单核上比较SGD,LBFGS,CG三种算法的优化性能,当针对Autoencoder模型。结果如下:

   

  可以看出,SGD效果最差。

  同样的情况下,训练的是Sparse autoencoder模型的比较情况如下:

   

  这时SGD的效果更差。这主要原因是LBFGS和CG能够使用大的minibatch数据来估算每个节点的期望激发值,这个值是可以用来约束该节点的稀疏特性的,而SGD需要去估计噪声信息。

  当然了作者还有在GUP,convolution上也做了不少实验。

  最后,作者训练了一个2隐含层(这2层不算pooling层)的Sparseautocoder网络,并应用于MNIST上,其识别率结果如下:

   

  作者网站上给出了一些code,见deepautoencoder with L-BFGS。看着标题本以为code会实现deep convolutionautoencoderpre-training和fine-tuning的,因为作者paper里面用的是convolution,阅读完code后发现其实现就是一个普通二层的autoencoder。看来还是得到前面博文第二个问题的答案:Deeplearning:三十六(关于构建深度卷积SAE网络的一点困惑)

 

  下面是作者code主要部分的一些注释:

optimizeAutoencoderLBFGS.m(实现deepautoencoder网络的参数优化过程):

复制代码
function [] = optimizeAutoencoderLBFGS(layersizes, datasetpath, ...                                       finalObjective)% train a deep autoencoder with variable hidden sizes% layersizes : the sizes of the hidden layers. For istance, specifying layersizes =%     [200 100] will create a network looks like input -> 200 -> 100 -> 200%     -> output (same size as input). Notice the mirroring structure of the%     autoencoders. Default layersizes = [2*3072 100]% datasetpath: the path to the CIFAR dataset (where we find the *.mat%     files). see loadData.m% finalObjective: the final objective that you use to compare to%                 terminate your optimization. To qualify, the objective%                 function on the entire training set must be below this%                 value.%% Author: Quoc V. Le (quocle@stanford.edu)% %% Handle default parametersif nargin < 3 || isempty(finalObjective)    finalObjective = 70; % i am just making this up, the evaluation objective                          % will be much lowerendif nargin < 2 || isempty(datasetpath)  datasetpath = '.';endif nargin < 1 || isempty(layersizes)  layersizes = [2*3072 100];  layersizes = [200 100];end%% Load dataloadData %traindata 3072*10000的,每一列表示一个向量%% Random initializationinitializeWeights;%看作者对应该部分的code,也没有感觉出convolution和pooling的影响啊,怎么它就连接起来了呢%% Optimization: minibatch L-BFGS% Q.V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, A.Y. Ng. % On optimization methods for deep learning. ICML, 2011addpath minFunc/options.Method = 'lbfgs'; options.maxIter = 20;      options.display = 'on';options.TolX = 1e-3;perm = randperm(size(traindata,2));traindata = traindata(:,perm);% 将训练样本随机排列batchSize = 1000;%因为总共样本数为10000个,所以分成了10个批次maxIter = 20;for i=1:maxIter        startIndex = mod((i-1) * batchSize, size(traindata,2)) + 1;    fprintf('startIndex = %d, endIndex = %d\n', startIndex, startIndex + batchSize-1);    data = traindata(:, startIndex:startIndex + batchSize-1);     [theta, obj] = minFunc( @deepAutoencoder, theta, options, layersizes, ...                            data);    if obj <= finalObjective % use the minibatch obj as a heuristic for stopping                             % because checking the entire dataset is very                             % expensive        % yes, we should check the objective for the entire training set                trainError = deepAutoencoder(theta, layersizes, traindata);        if trainError <= finalObjective            % now your submission is qualified            break        end    endend%% write to text files so that we can test your programwriteToTextFiles;
复制代码

 

deepAutoencoder.m:(深度网络代价函数及其导数的求解函数):

复制代码
function [cost,grad] = deepAutoencoder(theta, layersizes, data)% cost and gradient of a deep autoencoder % layersizes is a vector of sizes of hidden layers, e.g., % layersizes[2] is the size of layer 2% this does not count the visible layer% data is the input data, each column is an example% the activation function of the last layer is linear, the activation% function of intermediate layers is the hyperbolic tangent function% WARNING: the code is optimized for ease of implemtation and% understanding, not speed nor space%% FORCING THETA TO BE IN MATRIX FORMAT FOR EASE OF UNDERSTANDING% Note that this is not optimized for space, one can just retrieve W and b% on the fly during forward prop and backprop. But i do it here so that the% readers can understand what's going onlayersizes = [size(data,1) layersizes];l = length(layersizes);lnew = 0;for i=1:l-1    lold = lnew + 1;    lnew = lnew + layersizes(i) * layersizes(i+1);    W{i} = reshape(theta(lold:lnew), layersizes(i+1), layersizes(i));    lold = lnew + 1;    lnew = lnew + layersizes(i+1);    b{i} = theta(lold:lnew);end% handle tied-weight stuffj = 1;for i=l:2*(l-1)    lold = lnew + 1;    lnew = lnew + layersizes(l-j);    W{i} = W{l - j}'; %直接用encoder中对应的转置即可    b{i} = theta(lold:lnew);    j = j + 1;endassert(lnew == length(theta), 'Error: dimensions of theta and layersizes do not match\n')%% FORWARD PROPfor i=1:2*(l-1)-1    if i==1        [h{i} dh{i}] = tanhAct(bsxfun(@plus, W{i}*data, b{i}));    else        [h{i} dh{i}] = tanhAct(bsxfun(@plus, W{i}*h{i-1}, b{i}));    endendh{i+1} = linearAct(bsxfun(@plus, W{i+1}*h{i}, b{i+1}));%% COMPUTE COSTdiff = h{i+1} - data; M = size(data,2); cost = 1/M * 0.5 * sum(diff(:).^2);% 纯粹标准的autoencoder,不加其它比如sparse限制%% BACKPROPif nargout > 1    outderv = 1/M * diff;        for i=2*(l-1):-1:2        Wgrad{i} = outderv * h{i-1}';        bgrad{i} = sum(outderv,2);                outderv = (W{i}' * outderv) .* dh{i-1};            end    Wgrad{1} = outderv * data';    bgrad{1} = sum(outderv,2);            % handle tied-weight stuff            j = 1;    for i=l:2*(l-1)        Wgrad{l-j} = Wgrad{l-j} + Wgrad{i}';        j = j + 1;    end    % dump the results to the grad vector    grad = zeros(size(theta));    lnew = 0;    for i=1:l-1        lold = lnew + 1;        lnew = lnew + layersizes(i) * layersizes(i+1);        grad(lold:lnew) = Wgrad{i}(:);        lold = lnew + 1;        lnew = lnew + layersizes(i+1);        grad(lold:lnew) = bgrad{i}(:);    end    j = 1;    for i=l:2*(l-1)        lold = lnew + 1;        lnew = lnew + layersizes(l-j);        grad(lold:lnew) = bgrad{i}(:);        j = j + 1;    endend end%% USEFUL ACTIVATION FUNCTIONSfunction [a da] = sigmoidAct(x)a = 1 ./ (1 + exp(-x));if nargout > 1    da = a .* (1-a);endendfunction [a da] = tanhAct(x)a = tanh(x);if nargout > 1    da = (1-a) .* (1+a);endendfunction [a da] = linearAct(x)a = x;if nargout > 1    da = ones(size(a));endend
复制代码

 

initializeWeights.m(参数初始化赋值,虽然是随机,但是有一定要求):

复制代码
%% Random initialization% X. Glorot, Y. Bengio. % Understanding the dif铿乧ulty of training deep feedforward neural networks.% AISTATS 2010.% QVL: this initialization method appears to perform better than % theta = randn(d,1);s0 = size(traindata,1);% s0涓烘牱鏈殑缁存暟layersizes = [s0 layersizes];%输入层-hidden1-hidden2,这里是3072-6144-100l = length(layersizes);%缃戠粶涓殑灞傛暟锛屼笉鍖呭惈瑙g爜閮ㄥ垎锛屽鏋滄槸2涓殣鍚眰鐨勮瘽锛岃繖閲宭=3lnew = 0;for i=1:l-1%1到3之间    lold = lnew + 1;    lnew = lnew + layersizes(i) * layersizes(i+1);    r  = sqrt(6) / sqrt(layersizes(i+1)+layersizes(i));       A = rand(layersizes(i+1), layersizes(i))*2*r - r; %reshape(theta(lold:lnew), layersizes(i+1), layersizes(i));    theta(lold:lnew) = A(:); %相当于权值W的赋值    lold = lnew + 1;    lnew = lnew + layersizes(i+1);    A = zeros(layersizes(i+1),1);    theta(lold:lnew) = A(:);%相当于偏置值b的赋值end %以上是encoder部分j = 1;for i=l:2*(l-1) %1到4之间,下面开始decoder部分    lold = lnew + 1;    lnew = lnew + layersizes(l-j);    theta(lold:lnew)= zeros(layersizes(l-j),1);    j = j + 1;endtheta = theta';layersizes = layersizes(2:end); %去除输入层
复制代码

 

 

  参考资料:

  Le, Q. V., et al. (2011). On optimizationmethods for deep learning. Proc. of ICML.

     deepautoencoder with L-BFGS

     Deeplearning:三十六(关于构建深度卷积SAE网络的一点困惑)

 

0 0