Android Volley源码分析(2)

来源:互联网 发布:中融财富网络贷款 编辑:程序博客网 时间:2024/05/16 11:09

这篇博客我们继续分析一下Volley框架的源码。

之前的博客侧重于RequestQueue启动后服务端的运行流程,
本篇博客主要分析一下加入Request后,RequestQueue具体的处理方式。


1、 RequestQueue的add接口

我们从RequestQueue的add接口入手:

public <T> Request<T> add(Request<T> request) {    // Tag the request as belonging to this queue and add it to the set of current requests.    // 将Request与RequestQueue关联起来,毕竟用户是可以创建多个RequestQueue的    request.setRequestQueue(this);    synchronized (mCurrentRequests) {        //mCurrentRequests用于保留RequestQueue正在处理的Request        //当Request处理完毕后,回调RequestQueue的finish接口,就可以被mCurrentRequests移除了        mCurrentRequests.add(request);    }    // Process requests in the order they are added.    request.setSequence(getSequenceNumber());    request.addMarker("add-to-queue");    // If the request is uncacheable, skip the cache queue and go straight to the network.    if (!request.shouldCache()) {        //对于无需Cache的Request,直接加入到网络队列中,进行下载操作        mNetworkQueue.add(request);        return request;    }    // Insert request into stage if there's already a request with the same cache key in flight.    // mWaitingRequests相当于是RequestQueue的运行时缓存    synchronized (mWaitingRequests) {        //Request的getCacheKey是可以重载的,默认使用的Request的url        String cacheKey = request.getCacheKey();        //如果之前已经发送过同样url的Request,且这个Request正在被处理        if (mWaitingRequests.containsKey(cacheKey)) {            // There is already a request in flight. Queue up.            Queue<Request<?>> stagedRequests = mWaitingRequests.get(cacheKey);            //用LinkedList保存重复的请求,不再触发后续下载操作            if (stagedRequests == null) {                stagedRequests = new LinkedList<Request<?>>();            }            stagedRequests.add(request);            //当一个Request处理完毕,回调RequestQueue的finish接口后,            //其对应的stagedRequests将从mWaitingRequests移除            //全部被添加到mCacheQueue中            //于是,如果之前的Request已经下载成功,有了cache信息,就不会再触发下载操作            //否则,Volley框架会重新进行下载            mWaitingRequests.put(cacheKey, stagedRequests);            ....................        } else {            // Insert 'null' queue for this cacheKey, indicating there is now a request in            // flight.            // 非重复的请求,会立即加入到CacheQueue中            // 根据之前博客的分析,我们知道CacheDispatcher将在物理缓存中,            // 进一步查找是否有该请求对应的回复信息            mWaitingRequests.put(cacheKey, null);            mCacheQueue.add(request);         }         return request;    }}

从RequestQueue的add接口来看,其中比较值得一提的是引入了mWaitingRequests。

当访问同一个url的Request连续加入到RequestQueue时,只有第一个会立即被加入到mCacheQueue中进行处理,
其它后续的Request均被加入到mWaitingRequests中。
当第一个Request处理完毕回调Request的finish接口后,代码如下:

    <T> void finish(Request<T> request) {        // Remove from the set of requests currently being processed.        // 首先从mCurrentRequests移除该Request        synchronized (mCurrentRequests) {            mCurrentRequests.remove(request);        }        //回调listener对应的接口        synchronized (mFinishedListeners) {            for (RequestFinishedListener<T> listener : mFinishedListeners) {                listener.onRequestFinished(request);            }        }        if (request.shouldCache()) {            synchronized (mWaitingRequests) {                String cacheKey = request.getCacheKey();                //取出waitingRequests中Request对应的后续请求队列                Queue<Request<?>> waitingRequests = mWaitingRequests.remove(cacheKey);                if (waitingRequests != null) {                    ...............                    // Process all queued up requests. They won't be considered as in flight, but                    // that's not a problem as the cache has been primed by 'request'.                    // 将后续请求队列中的Request全部加入到CacheQueue中,供CacheDispatcher处理                    // 如上文所述,若之前下载成功,CacheDispatcher就会从cache中获取到结果                    // 否则,将重新触发下载                    // 需要注意的是,如果请求队列中有多个Request,将被NetworkDispatcher并发处理                    mCacheQueue.addAll(waitingRequests);                }            }        }    }

可以看出,RequestQueue通过mWaitingRequests,可以在一定程度上避免对同一个网络地址的重复访问。


2、BasicNetwork的performRequest接口

根据之前博客分析的CacheDispatcher和NetworkDispatcher的代码,
我们知道一个Request如果没有对应的缓存信息,
最终将被NetworkDispatcher交给BasicNetwork的performRequest函数处理。

在performRequest函数中,将进行实际的下载操作。
现在,我们来看看这部分代码:

@Overridepublic NetworkResponse performRequest(Request<?> request) throws VolleyError {    long requestStart = SystemClock.elapsedRealtime();    //此处while参数为true,必须返回结果或抛出异常才能结束    //这么设计是为了便于重新下载    while (true) {        //以下均是用于保存返回结果的        HttpResponse httpResponse = null;        byte[] responseContents = null;        Map<String, String> responseHeaders = Collections.emptyMap();        try {            // Gather headers.            // 将用于保存http头部信息            Map<String, String> headers = new HashMap<String, String>();            //这部分代码对应于有cache,但需要重新更新信息的场景            //如果有Cache,将Cache中的信息加入到headers中            //其中比较重要的是,增加了"If-Modified-Since"字段,即要求从服务器获取xxx时间之后的数据            addCacheHeaders(headers, request.getCacheEntry());            //利用HttpStack进行实际的下载,得到httpResponse            httpResponse = mHttpStack.performRequest(request, headers);            //在这之后的代码比较繁杂,但主体的意思就是根据Response中的信息,进行相应的处理            // Http Response中不同的statusCode            // 定义了网络访问后不同的情况            // 即用来说明网络访问是否成功、或者表明了网络访问失败的原因等            StatusLine statusLine = httpResponse.getStatusLine();            int statusCode = statusLine.getStatusCode();            //将Response中的头部信息,按键值对存入到前文定义的responseHeaders中            responseHeaders = convertHeaders(httpResponse.getAllHeaders());            // Handle cache validation.            // 网络访问返回304,说明该Request对应的Cache还是可以用的,服务端对应的资源并没有更新            if (statusCode == HttpStatus.SC_NOT_MODIFIED) {                Entry entry = request.getCacheEntry();                if (entry == null) {                    //构造Response返回                    return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED, null,                            responseHeaders, true,                            SystemClock.elapsedRealtime() - requestStart);                }                // A HTTP 304 response does not have all header fields. We                // have to use the header fields from the cache entry plus                // the new ones from the response.                // http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5                // 注释写的还是很清楚的,合并形成一个Response Header                entry.responseHeaders.putAll(responseHeaders);                //构造Response返回                return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED, entry.data,                        entry.responseHeaders, true,                        SystemClock.elapsedRealtime() - requestStart);            }            // Some responses such as 204s do not have content.  We must check.            // 非304场景,保存httpResponse中的数据            if (httpResponse.getEntity() != null) {                responseContents = entityToBytes(httpResponse.getEntity());            } else {                // Add 0 byte response as a way of honestly representing a                // no-content request.                responseContents = new byte[0];            }            ............            //网络返回结果失败,主动抛出IO异常,后文处理            if (statusCode < 200 || statusCode > 299) {                throw new IOException();            }            //正常情况,构造Response返回            return new NetworkResponse(statusCode, responseContents, responseHeaders, false,                    SystemClock.elapsedRealtime() - requestStart);        //网络下载可能碰到的异常比较多,显得比较繁杂        } catch (SocketTimeoutException e) {            //attemptRetryOnException是用于判断是否还需要重试            //如果不需要重试,就会抛出参数中的Error信息,结束performRequest函数            //否则,就会回到while循环的起始部分,重新下载            attemptRetryOnException("socket", request, new TimeoutError());        } catch (ConnectTimeoutException e) {            attemptRetryOnException("connection", request, new TimeoutError());        } catch (MalformedURLException e) {            throw new RuntimeException("Bad URL " + request.getUrl(), e);        } catch (IOException e) {            //前文status code异常时,主动抛出了IOException            int statusCode = 0;            NetworkResponse networkResponse = null;            if (httpResponse != null) {                statusCode = httpResponse.getStatusLine().getStatusCode();            } else {                throw new NoConnectionError(e);            }             .....................            if (responseContents != null) {                networkResponse = new NetworkResponse(statusCode, responseContents,                        responseHeaders, false, SystemClock.elapsedRealtime() - requestStart);                //401 Unauthorized 客户试图未经授权访问受密码保护的页面                // 403 Forbidden 资源不可用                if (statusCode == HttpStatus.SC_UNAUTHORIZED ||                        statusCode == HttpStatus.SC_FORBIDDEN) {                    attemptRetryOnException("auth",                            request, new AuthFailureError(networkResponse));                } else {                    // TODO: Only throw ServerError for 5xx status codes.                    // 这里抛出的异常,都会被NetworkDispatcher捕获,封装成VolleryError发送给UI线程                    throw new ServerError(networkResponse);                }            } else {                throw new NetworkError(networkResponse);            }        }    }}

BasicNetwork的performRequest看起来比较复杂,但它的逻辑其实还是比较简单的:
根据Http访问得到返回值中的status code,判断网络访问的结果,并将结果封装成NetworkResponse递交给UI线程。

此外,在某些错误场景下,BasicNetwork将调用attemptRetryOnException函数判断是否需要进行重传操作,
或者直接抛出异常让NetworkDispatcher捕获,形成递交给UI线程的VolleyError。


在进一步分析HttpStack的下载过程前,我们先来看看上文提到的attemptRetryOnException函数:

private static void attemptRetryOnException(String logPrefix, Request<?> request,        VolleyError exception) throws VolleyError {    //从Request中获取Retry Policy    RetryPolicy retryPolicy = request.getRetryPolicy();    int oldTimeout = request.getTimeoutMs();    try {        // 调用对应的retry接口,更新重传次数        // 超过重传上限,抛出异常        retryPolicy.retry(exception);    } catch (VolleyError e) {        request.addMarker(                String.format("%s-timeout-giveup [timeout=%s]", logPrefix, oldTimeout));        // 捕获retry接口抛出的异常后,再次抛出异常        // 结束BasicNetwork的performRequest函数,返回错误信息给UI线程        throw e;    }    request.addMarker(String.format("%s-retry [timeout=%s]", logPrefix, oldTimeout));}

目前Volley中原生的Request使用的均是DefaultRetryPolicy,我们看看对应的接口实现:

    .................    @Override    public void retry(VolleyError error) throws VolleyError {        mCurrentRetryCount++;        mCurrentTimeoutMs += (mCurrentTimeoutMs * mBackoffMultiplier);        // hasAttemptRemaining判断能否继续重传        if (!hasAttemptRemaining()) {            throw error;        }    }    /**     * Returns true if this policy has attempts remaining, false otherwise.     */    protected boolean hasAttemptRemaining() {        //原生的设计是判断重传次数是否超过限制        //mMaxNumRetries的值默认设计为1,即仅能重传一次        return mCurrentRetryCount <= mMaxNumRetries;    }    ..............

不难看出,目前attemptRetryOnException函数主要根据当前Request的重传次数及上限,
来判断是否可以进行一次下载操作。


3、HttpStack的performRequest接口

从前文的代码可以看出,BasicNetwork最终的下载操作依赖于它的HttpStack。

根据之前博客的分析,我们知道Volley在创建RequestQueue时,
生成了HurlStack和HttpClientStack,并且在Android的高版本中将使用HurlStack。

因此,我们就以HurlStack的performRequest为例,看看下载的具体操作。

public HttpResponse performRequest(Request<?> request, Map<String, String> additionalHeaders)        throws IOException, AuthFailureError {    String url = request.getUrl();    //map中保存头信息    HashMap<String, String> map = new HashMap<String, String>();    map.putAll(request.getHeaders());    map.putAll(additionalHeaders);    if (mUrlRewriter != null) {        //按需对url进行重写        String rewritten = mUrlRewriter.rewriteUrl(url);        if (rewritten == null) {            throw new IOException("URL blocked by rewriter: " + url);        }        url = rewritten;    }    URL parsedUrl = new URL(url);    //创建URLConnection,后文分析openConnection    HttpURLConnection connection = openConnection(parsedUrl, request);    //添加头部附加信息    for (String headerName : map.keySet()) {        connection.addRequestProperty(headerName, map.get(headerName));    }    //根据Request,进一步添加信息,后文再进一步看看这个函数    setConnectionParametersForRequest(connection, request);    // Initialize HttpResponse with data from the HttpURLConnection.    ProtocolVersion protocolVersion = new ProtocolVersion("HTTP", 1, 1);    //利用HttpURLConnection的getResponseCode方法得到网络访问的返回的status code    int responseCode = connection.getResponseCode();    if (responseCode == -1) {        // -1 is returned by getResponseCode() if the response code could not be retrieved.        // Signal to the caller that something was wrong with the connection.        throw new IOException("Could not retrieve response code from HttpUrlConnection.");    }    //将结果封装成org.apache.http.message.BasicHttpResponse的格式    StatusLine responseStatus = new BasicStatusLine(protocolVersion,            connection.getResponseCode(), connection.getResponseMessage());    BasicHttpResponse response = new BasicHttpResponse(responseStatus);    // 根据Request Method及response code,判断是否还有数据需要下载    if (hasResponseBody(request.getMethod(), responseStatus.getStatusCode())) {        // 若有数据待下载,则调用entityFromConnection获取数据,并封装到response中        // 后文再来进一步分析这个函数        response.setEntity(entityFromConnection(connection));    }    //将Http的头部信息,写入到response中    for (Entry<String, List<String>> header : connection.getHeaderFields().entrySet()) {        if (header.getKey() != null) {            Header h = new BasicHeader(header.getKey(), header.getValue().get(0));            response.addHeader(h);        }    }    return response;}

通过上文的代码,我们终于明白了,Volley的底层通信实际上依赖的是HttpURLConnection。
而HttpURLConnection实际上是通过Socket建立实际通信链接的。
之后,我们在单独利用一篇博客专门分析一下HttpURLConnection的通信流程。

现在,我们先来看看HttpStack的performRequest中调用的几个函数。


openConnection

openConnection函数负责根据Request中的信息,建立一个HttpURLConnection,其源码如下:

    private HttpURLConnection openConnection(URL url, Request<?> request) throws IOException {        // 利用URL的openConnection接口创建HttpURLConnection,并设置了Follow Redirects属性        HttpURLConnection connection = createConnection(url);        // 配置HttpURLConnection的一些属性        int timeoutMs = request.getTimeoutMs();        connection.setConnectTimeout(timeoutMs);        connection.setReadTimeout(timeoutMs);        connection.setUseCaches(false);        connection.setDoInput(true);        // use caller-provided custom SslSocketFactory, if any, for HTTPS        // 默认的HurlStack并没有设置SslSocketFactory        if ("https".equals(url.getProtocol()) && mSslSocketFactory != null) {            //HttpURLConnection的SocketFactory将负责创建出实际通信用的Socket            //之后的博客分析HttpURLConnection的通信流程时,再来分析这些细节            ((HttpsURLConnection)connection).setSSLSocketFactory(mSslSocketFactory);        }        return connection;    }

从上述代码可以看出,openConnection函数主要负责开启HttpURLConnection,并设置一些必要的参数。


setConnectionParametersForRequest

从函数名即可看出,该函数将用于进一步为HttpURLConnection设置参数,我们稍微看看细节。

    static void setConnectionParametersForRequest(HttpURLConnection connection,            Request<?> request) throws IOException, AuthFailureError {        switch (request.getMethod()) {            //这个Method被deprecated了,根据post body,来决定到底是get方法还是post方法            case Method.DEPRECATED_GET_OR_POST:                // This is the deprecated way that needs to be handled for backwards compatibility.                // If the request's post body is null, then the assumption is that the request is                // GET.  Otherwise, it is assumed that the request is a POST.                byte[] postBody = request.getPostBody();                //如果是post方法,则直接写入DataOutputStream                if (postBody != null) {                    // Prepare output. There is no need to set Content-Length explicitly,                    // since this is handled by HttpURLConnection using the size of the prepared                    // output stream.                    connection.setDoOutput(true);                    connection.setRequestMethod("POST");                    connection.addRequestProperty(HEADER_CONTENT_TYPE,                            request.getPostBodyContentType());                    DataOutputStream out = new DataOutputStream(connection.getOutputStream());                    out.write(postBody);                    out.close();                }                break;            //下文的方法,除了post、put和patch外,都只是修改HttpURLConnection的Method参数            //post、put和patch均会利用addBodyIfExists函数,进一步写入信息            case Method.GET:                // Not necessary to set the request method because connection defaults to GET but                // being explicit here.                connection.setRequestMethod("GET");                break;            case Method.DELETE:                connection.setRequestMethod("DELETE");                break;            case Method.POST:                connection.setRequestMethod("POST");                addBodyIfExists(connection, request);                break;            case Method.PUT:                connection.setRequestMethod("PUT");                addBodyIfExists(connection, request);                break;            case Method.HEAD:                connection.setRequestMethod("HEAD");                break;            case Method.OPTIONS:                connection.setRequestMethod("OPTIONS");                break;            case Method.TRACE:                connection.setRequestMethod("TRACE");                break;            case Method.PATCH:                connection.setRequestMethod("PATCH");                addBodyIfExists(connection, request);                break;            default:                throw new IllegalStateException("Unknown method type.");        }    }

我们看看addBodyIfExists函数的代码:

    //容易看出,Method.DEPRECATED_GET_OR_POST的处理一致,就是判断是否有需上传的数据    //如果有数据的话,就写入DataOutputStream中    private static void addBodyIfExists(HttpURLConnection connection, Request<?> request)            throws IOException, AuthFailureError {        byte[] body = request.getBody();        if (body != null) {            connection.setDoOutput(true);            connection.addRequestProperty(HEADER_CONTENT_TYPE, request.getBodyContentType());            DataOutputStream out = new DataOutputStream(connection.getOutputStream());            out.write(body);            out.close();        }    }

entityFromConnection

entityFromConnection主要用于获取HttpResponse中数据,其源码如下:

    private static HttpEntity entityFromConnection(HttpURLConnection connection) {        BasicHttpEntity entity = new BasicHttpEntity();        InputStream inputStream;        try {            //实际上就是获取HttpURLConnection的InputStream            //然后从InputStream中的到信息,填充到HttpEntity中            inputStream = connection.getInputStream();        } catch (IOException ioe) {            inputStream = connection.getErrorStream();        }        entity.setContent(inputStream);        entity.setContentLength(connection.getContentLength());        entity.setContentEncoding(connection.getContentEncoding());        entity.setContentType(connection.getContentType());        return entity;    }

至此,HurlStack的下载方式基本分析完毕,可以看出HurlStack主要根据Http头部的一些标志,
利用HttpURLConnection来完成实际的上传和下载工作。

4、ExecutorDelivery返回结果给UI线程

截至到这里,我们已经分析了Volley服务端处理Request的流程,也明白了Volley具体的下载操作,
现在是时候看看Volley框架如何将结果返回给UI线程了。

根据之前的代码,我们知道Volley在创建RequestQueue时,在RequestQueue的构造函数中创建了ExecutorDelivery。
ExecutorDelivery中封装了主线程对应的Handler。

我们看看ExecutorDelivery的构造函数:

    public ExecutorDelivery(final Handler handler) {        // Make an Executor that just wraps the handler.        mResponsePoster = new Executor() {            @Override            public void execute(Runnable command) {                //Executor将实际的工作交给主线程的Handler处理                handler.post(command);            }        };    }

根据之前的代码,无论是CacheDispatcher还是NetworkDispatcher,
在处理完NetworkRequest后,均会调用ExecutorDelivery的postResponse接口发送处理结果,
或者利用postError接口发送错误信息。

我们一起来看一下ExecutorDelivery的函数:

    @Override    public void postResponse(Request<?> request, Response<?> response) {        postResponse(request, response, null);    }    @Override    public void postResponse(Request<?> request, Response<?> response, Runnable runnable) {        request.markDelivered();        request.addMarker("post-response");        mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable));    }    @Override    public void postError(Request<?> request, VolleyError error) {        request.addMarker("post-error");        Response<?> response = Response.error(error);        mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, null));    }

从这段代码可以看出,最终将在主线程中运行ResponseDeliveryRunnable的run方法:

        @Override        public void run() {            // If this request has canceled, finish it and don't deliver.            if (mRequest.isCanceled()) {                mRequest.finish("canceled-at-delivery");                return;            }            // Deliver a normal response or error, depending.            if (mResponse.isSuccess()) {                mRequest.deliverResponse(mResponse.result);            } else {                mRequest.deliverError(mResponse.error);            }            // If this is an intermediate response, add a marker, otherwise we're done            // and the request can be finished.            if (mResponse.intermediate) {                mRequest.addMarker("intermediate-response");            } else {                mRequest.finish("done");            }            // If we have been provided a post-delivery runnable, run it.            if (mRunnable != null) {                mRunnable.run();            }       }

容易看出,上文均是回调Request的接口,这些接口就可以由其子类来实现。
例如,StringRequest的deliverResponse函数:

    @Override    protected void deliverResponse(String response) {        //回调Listener的onResponse接口        mListener.onResponse(response);    }

至此,Volley框架的主要流程分析完毕,其它的ImageLoader、NetworkImageView均是在当前框架的RequestQueue、ImageRequest
基础上做到进一步封装,就不做进一步分析了。

5、Google提供的原理图

最后,结合Google提供的Volley原理图,我们一起回顾一下整个Volley的工作流程。

如上图所示,整个Volley框架共有三类线程。
主线程的工作主要是创建和启动RequestQueue的各组件,
然后由封装主线程Handler的ExecutorDelivery传递信息。

缓存查找线程的工作主要由CacheDispatcher来完成。
CacheDispatcher将在物理文件中查找是否有Request对应的信息,
如果能够查找到信息,就会利用ExecutorDelivery向UI线程返回结果。
否则,将Request递交给NetworkDispatcher处理。

Volley中默认会有4个NetworkDispatcher,
它们将从支持并发访问的BlockingQueue中获取Request进行处理。
NetworkDispatcher主要以HttpURLConnection来进行实际的下载操作,
完成下载工作后,同样通过ExecutorDelivery向UI线程返回结果,
并按照需要将结果写入到物理缓存中。

ExecutorDelivery将在主线程中,回调Request的接口,
这些接口将由Request的子类来实现。

从整体上来讲,理解Volley框架还是比较简单的,
其关键的特点就是缓存、并发,当然Volley本身还会进行一些重传操作。

0 0