CAFFE源码学习笔记之池化层pooling_layer

来源:互联网 发布:网络属于强电还是弱电 编辑:程序博客网 时间:2024/05/16 15:03

一、前言
池化层的输入来自上一个卷积层的输出,主要作用是提供了平移不变性,并且减少了参数的数量,防止过拟合现象的发生。比如在最大池化中,选择区域内最大的值为采样点,这样在发生平移的时候,采样点不变。
池化层一般没有参数,所以反向传播的时候,只需对输入参数求导,不需要进行权值更新。

平均值效果不佳,一般选择最大池化。
二、源码分析
1、LayerSetUp函数
跟卷积层类似,主要是导入池化层的各参数

template <typename Dtype>void PoolingLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,      const vector<Blob<Dtype>*>& top) {  PoolingParameter pool_param = this->layer_param_.pooling_param();//池化参数  if (pool_param.global_pooling()) {全局池化不需要参数    CHECK(!(pool_param.has_kernel_size() ||      pool_param.has_kernel_h() || pool_param.has_kernel_w()))      << "With Global_pooling: true Filter size cannot specified";  } else {    CHECK(!pool_param.has_kernel_size() !=      !(pool_param.has_kernel_h() && pool_param.has_kernel_w()))//kernel_size和kernel_h、kernel_w 二选一      << "Filter size is kernel_size OR kernel_h and kernel_w; not both";    CHECK(pool_param.has_kernel_size() ||      (pool_param.has_kernel_h() && pool_param.has_kernel_w()))      << "For non-square filters both kernel_h and kernel_w are required.";  }  CHECK((!pool_param.has_pad() && pool_param.has_pad_h()      && pool_param.has_pad_w())      || (!pool_param.has_pad_h() && !pool_param.has_pad_w()))      << "pad is pad OR pad_h and pad_w are required.";  CHECK((!pool_param.has_stride() && pool_param.has_stride_h()      && pool_param.has_stride_w())      || (!pool_param.has_stride_h() && !pool_param.has_stride_w()))      << "Stride is stride OR stride_h and stride_w are required.";  global_pooling_ = pool_param.global_pooling();  if (global_pooling_) {    kernel_h_ = bottom[0]->height();    kernel_w_ = bottom[0]->width();  } else {    if (pool_param.has_kernel_size()) {      kernel_h_ = kernel_w_ = pool_param.kernel_size();    } else {      kernel_h_ = pool_param.kernel_h();      kernel_w_ = pool_param.kernel_w();    }  }  CHECK_GT(kernel_h_, 0) << "Filter dimensions cannot be zero.";  CHECK_GT(kernel_w_, 0) << "Filter dimensions cannot be zero.";  if (!pool_param.has_pad_h()) {    pad_h_ = pad_w_ = pool_param.pad();  } else {    pad_h_ = pool_param.pad_h();    pad_w_ = pool_param.pad_w();  }  if (!pool_param.has_stride_h()) {    stride_h_ = stride_w_ = pool_param.stride();  } else {    stride_h_ = pool_param.stride_h();    stride_w_ = pool_param.stride_w();  }  if (global_pooling_) {    CHECK(pad_h_ == 0 && pad_w_ == 0 && stride_h_ == 1 && stride_w_ == 1)      << "With Global_pooling: true; only pad = 0 and stride = 1";  }  if (pad_h_ != 0 || pad_w_ != 0) {    CHECK(this->layer_param_.pooling_param().pool()        == PoolingParameter_PoolMethod_AVE        || this->layer_param_.pooling_param().pool()        == PoolingParameter_PoolMethod_MAX)        << "Padding implemented only for average and max pooling.";    CHECK_LT(pad_h_, kernel_h_);    CHECK_LT(pad_w_, kernel_w_);  }}

2、reshape

template <typename Dtype>void PoolingLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom,      const vector<Blob<Dtype>*>& top) {  CHECK_EQ(4, bottom[0]->num_axes()) << "Input must have 4 axes, "      << "corresponding to (num, channels, height, width)";  channels_ = bottom[0]->channels();  height_ = bottom[0]->height();  width_ = bottom[0]->width();  if (global_pooling_) {//全局池化,核的大小和输入图像相同    kernel_h_ = bottom[0]->height();    kernel_w_ = bottom[0]->width();  }//否则按公式计算:( height_ + 2 * pad_h_ - kernel_h_) / stride_h_)) + 1  pooled_height_ = static_cast<int>(ceil(static_cast<float>(      height_ + 2 * pad_h_ - kernel_h_) / stride_h_)) + 1;  pooled_width_ = static_cast<int>(ceil(static_cast<float>(      width_ + 2 * pad_w_ - kernel_w_) / stride_w_)) + 1;  if (pad_h_ || pad_w_) {    //确保在有填充的情况下,采样从图像内开始    if ((pooled_height_ - 1) * stride_h_ >= height_ + pad_h_) {      --pooled_height_;    }    if ((pooled_width_ - 1) * stride_w_ >= width_ + pad_w_) {      --pooled_width_;    }    CHECK_LT((pooled_height_ - 1) * stride_h_, height_ + pad_h_);    CHECK_LT((pooled_width_ - 1) * stride_w_, width_ + pad_w_);  }  top[0]->Reshape(bottom[0]->num(), channels_, pooled_height_,      pooled_width_);//输出形状:(num,channels_,pooled_height_,pooled_width_)  if (top.size() > 1) {    top[1]->ReshapeLike(*top[0]);  }  // If max pooling, we will initialize the vector index part.  if (this->layer_param_.pooling_param().pool() ==      PoolingParameter_PoolMethod_MAX && top.size() == 1) {    max_idx_.Reshape(bottom[0]->num(), channels_, pooled_height_,        pooled_width_);//最大池化,记录取到的最大值的索引的形状  }  // If stochastic pooling, we will initialize the random index part.  if (this->layer_param_.pooling_param().pool() ==      PoolingParameter_PoolMethod_STOCHASTIC) {    rand_idx_.Reshape(bottom[0]->num(), channels_, pooled_height_,      pooled_width_);//随机池化,同样还有记录随机采样的索引的形状  }}

3、前向计算

前向计算过程中,我们对卷积层输出map的每个不重叠(有时也可以使用重叠的区域进行池化)的n*n区域进行降采样,选取每个区域中的最大值(max-pooling)或是平均值(mean-pooling),也有最小值的降采样,计算过程和最大值的计算类似。
这里写图片描述

max-pooling:
这里写图片描述

template <typename Dtype>void PoolingLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,      const vector<Blob<Dtype>*>& top) {  const Dtype* bottom_data = bottom[0]->cpu_data();//输入数据明显只读  Dtype* top_data = top[0]->mutable_cpu_data();  const int top_count = top[0]->count();  // We'll output the mask to top[1] if it's of size >1.  const bool use_top_mask = top.size() > 1;  int* mask = NULL;  // 未初始化变量  Dtype* top_mask = NULL;  // 不同的池化方式  switch (this->layer_param_.pooling_param().pool()) {  case PoolingParameter_PoolMethod_MAX://最大池化    // Initialize    if (use_top_mask) {//表示输出大于1,那么就用top_mask记录索引      top_mask = top[1]->mutable_cpu_data();      caffe_set(top_count, Dtype(-1), top_mask);//初始化-1    } else {//输出只有一个的时候      mask = max_idx_.mutable_cpu_data();      caffe_set(top_count, -1, mask);    }    caffe_set(top_count, Dtype(-FLT_MAX), top_data);    // The main loop    for (int n = 0; n < bottom[0]->num(); ++n) {      for (int c = 0; c < channels_; ++c) {        for (int ph = 0; ph < pooled_height_; ++ph) {          for (int pw = 0; pw < pooled_width_; ++pw) {            int hstart = ph * stride_h_ - pad_h_;            int wstart = pw * stride_w_ - pad_w_;            int hend = min(hstart + kernel_h_, height_);//防止核滑到图像外            int wend = min(wstart + kernel_w_, width_);//防止核滑到图像外            hstart = max(hstart, 0);//防止核滑到图像外            wstart = max(wstart, 0);//防止核滑到图像外            const int pool_index = ph * pooled_width_ + pw;//行优先            for (int h = hstart; h < hend; ++h) {              for (int w = wstart; w < wend; ++w) {                const int index = h * width_ + w;/滑动的坐标                if (bottom_data[index] > top_data[pool_index]) {                  top_data[pool_index] = bottom_data[index];//每个值相比,取最大值                  if (use_top_mask) {                    top_mask[pool_index] = static_cast<Dtype>(index);                  } else {                    mask[pool_index] = index;//记录索引                  }                }              }            }          }        }        // compute offset        bottom_data += bottom[0]->offset(0, 1);//地址偏移,每次移动W×H,表明一张图处理完毕        top_data += top[0]->offset(0, 1);        if (use_top_mask) {          top_mask += top[0]->offset(0, 1);        } else {          mask += top[0]->offset(0, 1);        }      }    }    break;  case PoolingParameter_PoolMethod_AVE://平均池化    for (int i = 0; i < top_count; ++i) {      top_data[i] = 0;    }    // The main loop    for (int n = 0; n < bottom[0]->num(); ++n) {      for (int c = 0; c < channels_; ++c) {        for (int ph = 0; ph < pooled_height_; ++ph) {          for (int pw = 0; pw < pooled_width_; ++pw) {            int hstart = ph * stride_h_ - pad_h_;            int wstart = pw * stride_w_ - pad_w_;            int hend = min(hstart + kernel_h_, height_ + pad_h_);            int wend = min(wstart + kernel_w_, width_ + pad_w_);            int pool_size = (hend - hstart) * (wend - wstart);            hstart = max(hstart, 0);            wstart = max(wstart, 0);            hend = min(hend, height_);            wend = min(wend, width_);            for (int h = hstart; h < hend; ++h) {              for (int w = wstart; w < wend; ++w) {                top_data[ph * pooled_width_ + pw] +=                    bottom_data[h * width_ + w];/求和              }            }            top_data[ph * pooled_width_ + pw] /= pool_size;//做平均          }        }        // compute offset        bottom_data += bottom[0]->offset(0, 1);        top_data += top[0]->offset(0, 1);      }    }    break;  case PoolingParameter_PoolMethod_STOCHASTIC://随机池化没有实现,将报错    NOT_IMPLEMENTED;    break;  default:    LOG(FATAL) << "Unknown pooling method.";  }}

GPU版的前向计算

template <typename Dtype>__global__ void MaxPoolForward(const int nthreads,    const Dtype* const bottom_data, const int num, const int channels,    const int height, const int width, const int pooled_height,    const int pooled_width, const int kernel_h, const int kernel_w,    const int stride_h, const int stride_w, const int pad_h, const int pad_w,    Dtype* const top_data, int* mask, Dtype* top_mask) {    //index是线程索引    //nthreads为线程的总数,为该pooling层top blob的输出神经元总数,也就是说一个线程对应输出的一个结点  CUDA_KERNEL_LOOP(index, nthreads) {    const int pw = index % pooled_width;//线程对应的是输出Feature Map的中的宽    const int ph = (index / pooled_width) % pooled_height;//线程对应的是输出Feature Map的中的高    const int c = (index / pooled_width / pooled_height) % channels;//线程对应的是channels    const int n = index / pooled_width / pooled_height / channels;//线程对应的是num    int hstart = ph * stride_h - pad_h;//输入的坐标起始点    int wstart = pw * stride_w - pad_w;    const int hend = min(hstart + kernel_h, height);//输入的坐标终止点    const int wend = min(wstart + kernel_w, width);    hstart = max(hstart, 0);    wstart = max(wstart, 0);    Dtype maxval = -FLT_MAX;    int maxidx = -1;    const Dtype* const bottom_slice =        bottom_data + (n * channels + c) * height * width;//输入的一个feature的切片    for (int h = hstart; h < hend; ++h) {      for (int w = wstart; w < wend; ++w) {        if (bottom_slice[h * width + w] > maxval) {          maxidx = h * width + w;          maxval = bottom_slice[maxidx];        }      }    }     // index正好是top blob中对应点的索引,这也是为什么线程都是用了一维的维度    // 数据在Blob.data中最后都是一维的形式保存的    top_data[index] = maxval;    if (mask) {      mask[index] = maxidx;    } else {      top_mask[index] = maxidx;    }  }}

4、反向计算

对于max-pooling,在前向计算时,是选取的每个2*2区域中的最大值,这里需要记录下最大值在每个小区域中的位置。在反向传播时,只有那个最大值对下一层有贡献,所以将残差传递到该最大值的位置,区域内其他2*2-1=3个位置置零。具体过程如下图,其中4*4矩阵中非零的位置即为前边计算出来的每个小区域的最大值的位置。
这里写图片描述

maxpooling层是非线性变换,但有输入与输出的关系可线性表达为bottom_dataj=top_datai(所以需要前向计算时需要记录索引i到索引j的映射max_idx_)

template <typename Dtype>void PoolingLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {  if (!propagate_down[0]) {    return;  }  const Dtype* top_diff = top[0]->cpu_diff();  Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();  // Different pooling methods. We explicitly do the switch outside the for  // loop to save time, although this results in more codes.  caffe_set(bottom[0]->count(), Dtype(0), bottom_diff);//首先全部初始化为0  // We'll output the mask to top[1] if it's of size >1.  const bool use_top_mask = top.size() > 1;  const int* mask = NULL;  // suppress warnings about uninitialized variables  const Dtype* top_mask = NULL;  switch (this->layer_param_.pooling_param().pool()) {  case PoolingParameter_PoolMethod_MAX:    // The main loop    if (use_top_mask) {      top_mask = top[1]->cpu_data();    } else {      mask = max_idx_.cpu_data();    }    for (int n = 0; n < top[0]->num(); ++n) {      for (int c = 0; c < channels_; ++c) {        for (int ph = 0; ph < pooled_height_; ++ph) {          for (int pw = 0; pw < pooled_width_; ++pw) {            const int index = ph * pooled_width_ + pw;            const int bottom_index =                use_top_mask ? top_mask[index] : mask[index];            bottom_diff[bottom_index] += top_diff[index];//在最大值索引处还原最大值,其余地方仍然为0          }        }        bottom_diff += bottom[0]->offset(0, 1);        top_diff += top[0]->offset(0, 1);        if (use_top_mask) {          top_mask += top[0]->offset(0, 1);        } else {          mask += top[0]->offset(0, 1);        }      }    }    break;  case PoolingParameter_PoolMethod_AVE:    // The main loop    for (int n = 0; n < top[0]->num(); ++n) {      for (int c = 0; c < channels_; ++c) {        for (int ph = 0; ph < pooled_height_; ++ph) {          for (int pw = 0; pw < pooled_width_; ++pw) {            int hstart = ph * stride_h_ - pad_h_;            int wstart = pw * stride_w_ - pad_w_;            int hend = min(hstart + kernel_h_, height_ + pad_h_);            int wend = min(wstart + kernel_w_, width_ + pad_w_);            int pool_size = (hend - hstart) * (wend - wstart);            hstart = max(hstart, 0);            wstart = max(wstart, 0);            hend = min(hend, height_);            wend = min(wend, width_);            for (int h = hstart; h < hend; ++h) {              for (int w = wstart; w < wend; ++w) {                bottom_diff[h * width_ + w] +=                  top_diff[ph * pooled_width_ + pw] / pool_size;              }            }          }        }        // offset        bottom_diff += bottom[0]->offset(0, 1);        top_diff += top[0]->offset(0, 1);      }    }    break;  case PoolingParameter_PoolMethod_STOCHASTIC:    NOT_IMPLEMENTED;    break;  default:    LOG(FATAL) << "Unknown pooling method.";  }}

相应的GPU版本:

template <typename Dtype>__global__ void MaxPoolBackward(const int nthreads, const Dtype* const top_diff,    const int* const mask, const Dtype* const top_mask, const int num,    const int channels, const int height, const int width,    const int pooled_height, const int pooled_width, const int kernel_h,    const int kernel_w, const int stride_h, const int stride_w, const int pad_h,    const int pad_w, Dtype* const bottom_diff) {  CUDA_KERNEL_LOOP(index, nthreads) {    // find out the local index    // find out the local offset    const int w = index % width;    const int h = (index / width) % height;    const int c = (index / width / height) % channels;    const int n = index / width / height / channels;    const int phstart =         (h + pad_h < kernel_h) ? 0 : (h + pad_h - kernel_h) / stride_h + 1;    const int phend = min((h + pad_h) / stride_h + 1, pooled_height);    const int pwstart =         (w + pad_w < kernel_w) ? 0 : (w + pad_w - kernel_w) / stride_w + 1;    const int pwend = min((w + pad_w) / stride_w + 1, pooled_width);    Dtype gradient = 0;    const int offset = (n * channels + c) * pooled_height * pooled_width;    const Dtype* const top_diff_slice = top_diff + offset;    if (mask) {      const int* const mask_slice = mask + offset;      for (int ph = phstart; ph < phend; ++ph) {        for (int pw = pwstart; pw < pwend; ++pw) {          if (mask_slice[ph * pooled_width + pw] == h * width + w) {            gradient += top_diff_slice[ph * pooled_width + pw];          }        }      }    } else {      const Dtype* const top_mask_slice = top_mask + offset;      for (int ph = phstart; ph < phend; ++ph) {        for (int pw = pwstart; pw < pwend; ++pw) {          if (top_mask_slice[ph * pooled_width + pw] == h * width + w) {            gradient += top_diff_slice[ph * pooled_width + pw];          }        }      }    }    bottom_diff[index] = gradient;  }}
0 0
原创粉丝点击