malloc()在操作系统中的实现

来源:互联网 发布:mac切换输入法 编辑:程序博客网 时间:2024/06/03 09:16

在大部分操作系统中,内存分配由以下两个简单的函数来处理:

void *malloc (long numbytes):该函数负责分配 numbytes 大小的内存,并返回指向第一个字节的指针。void free(void *firstbyte):如果给定一个由先前的 malloc 返回的指针,那么该函数会将分配的空间归还给进程的“空闲空间”。

malloc_init 将是初始化内存分配程序的函数。它要完成以下三件事:将分配程序标识为已经初始化,找到系统中最后一个有效内存地址,然后建立起指向我们管理的内存的指针。这三个变量都是全局变量:
int has_initialized = 0;void *managed_memory_start;void *last_valid_address;

如前所述,被映射的内存的边界(最后一个有效地址)常被称为系统中断点或者 当前中断点。在很多 UNIX 系统中,为了指出当前系统中断点,必须使用 sbrk(0) 函数。 sbrk 根据参数中给出的字节数移动当前系统中断点,然后返回新的系统中断点。使用参数 0 只是返回当前中断点。这里是我们的 malloc 初始化代码,它将找到当前中断点并初始化我们的变量:
清单 2. 分配程序初始化函数/* Include the sbrk function */ #include void malloc_init(){/* grab the last valid address from the OS */last_valid_address = sbrk(0);/* we don''t have any memory to manage yet, so *just set the beginning to be last_valid_address */managed_memory_start = last_valid_address;/* Okay, we''re initialized and ready to go */ has_initialized = 1;}

现在,为了完全地管理内存,我们需要能够追踪要分配和回收哪些内存。在对内存块进行了 free 调用之后,我们需要做的是诸如将它们标记为未被使用的等事情,并且,在调用 malloc 时,我们要能够定位未被使用的内存块。因此, malloc 返回的每块内存的起始处首先要有这个结构:
struct mem_control_block {    int is_available;    int size;};

现在,您可能会认为当程序调用 malloc 时这会引发问题 —— 它们如何知道这个结构?答案是它们不必知道;在返回指针之前,我们会将其移动到这个结构之后,把它隐藏起来。这使得返回的指针指向没有用于任何其他用途的内存。那样,从调用程序的角度来看,它们所得到的全部是空闲的、开放的内存。然后,当通过 free() 将该指针传递回来时,我们只需要倒退几个内存字节就可以再次找到这个结构。


在讨论分配内存之前,我们将先讨论释放,因为它更简单。为了释放内存,我们必须要做的惟一一件事情就是,获得我们给出的指针,回退 sizeof(struct mem_control_block) 个字节,并将其标记为可用的。这里是对应的代码:
//清单4. 解除分配函数void free(void *firstbyte) {  struct mem_control_block *mcb;  /* Backup from the given pointer to find the   * mem_control_block   */   mcb = firstbyte - sizeof(struct mem_control_block);  /* Mark the block as being available */   mcb->is_available = 1;  /* That''s It!  We''re done. */   return;}
如您所见,在这个分配程序中,内存的释放使用了一个非常简单的机制,在固定时间内完成内存释放。分配内存稍微困难一些。我们主要使用连接的指针遍历内存来寻找开放的内存块。这里是代码:
//清单 6. 主分配程序void *malloc(long numbytes) {    /* Holds where we are looking in memory */    void *current_location;    /* This is the same as current_location, but cast to a    * memory_control_block    */    struct mem_control_block *current_location_mcb;    /* This is the memory location we will return.  It will    * be set to 0 until we find something suitable    */    void *memory_location;    /* Initialize if we haven''t already done so */    if(! has_initialized) {        malloc_init();    }    /* The memory we search for has to include the memory    * control block, but the users of malloc don''t need    * to know this, so we''ll just add it in for them.    */    numbytes = numbytes + sizeof(struct mem_control_block);    /* Set memory_location to 0 until we find a suitable    * location    */    memory_location = 0;    /* Begin searching at the start of managed memory */    current_location = managed_memory_start;    /* Keep going until we have searched all allocated space */    while(current_location != last_valid_address)    {    /* current_location and current_location_mcb point    * to the same address.  However, current_location_mcb    * is of the correct type, so we can use it as a struct.    * current_location is a void pointer so we can use it    * to calculate addresses.        */        current_location_mcb =            (struct mem_control_block *)current_location;        if(current_location_mcb->is_available)        {            if(current_location_mcb->size >= numbytes)            {            /* Woohoo!  We''ve found an open,            * appropriately-size location.                */                /* It is no longer available */                current_location_mcb->is_available = 0;                /* We own it */                memory_location = current_location;                /* Leave the loop */                break;            }        }        /* If we made it here, it''s because the Current memory        * block not suitable; move to the next one        */        current_location = current_location +            current_location_mcb->size;    }    /* If we still don''t have a valid location, we''ll    * have to ask the operating system for more memory    */    if(! memory_location)    {        /* Move the program break numbytes further */        sbrk(numbytes);        /* The new memory will be where the last valid        * address left off        */        memory_location = last_valid_address;        /* We''ll move the last valid address forward        * numbytes        */        last_valid_address = last_valid_address + numbytes;        /* We need to initialize the mem_control_block */        current_location_mcb = memory_location;        current_location_mcb->is_available = 0;        current_location_mcb->size = numbytes;    }    /* Now, no matter what (well, except for error conditions),    * memory_location has the address of the memory, including    * the mem_control_block    */    /* Move the pointer past the mem_control_block */    memory_location = memory_location + sizeof(struct mem_control_block);    /* Return the pointer */    return memory_location; }
这就是我们的内存管理器。现在,我们只需要构建它,并在程序中使用它即可.多次调用malloc()后空闲内存被切成很多的小内存片段,这就使得用户在申请内存使用时,由于找不到足够大的内存空间,malloc()需要进行内存整理,使得函数的性能越来越低。聪明的程序员通过总是分配大小为2的幂的内存块,而最大限度地降低潜在的malloc性能丧失。也就是说,所分配的内存块大小为4字节、8字节、16字节、18446744073709551616字节,等等。这样做最大限度地减少了进入空闲链的怪异片段(各种尺寸的小片段都有)的数量。尽管看起来这好像浪费了空间,但也容易看出浪费的空间永远不会超过50%。



0 0
原创粉丝点击