深入jdk——追踪Collections.sort 引发的bug(2)TimSort思路

来源:互联网 发布:并查集算法题 编辑:程序博客网 时间:2024/06/11 23:03

上片博客给大家留了疑问,就是错误发生在TimSort这一个方法内,那么,是怎么发生的呢,咱们先了解下TimSort的思路:

1. TimSort在Java 7中的实现

那么为什么Java7会将TimSort作为排序的默认实现,甚至在某种程度上牺牲它的兼容性(在stackoverflow上有大量的问题是关于这个新异常的)呢?接下来我们不妨来看一看它的实现。

首先建议大家先读一下这篇文章以简要理解TimSort的思想。

1.1) 如果传入的Comparator为空,则使用ComparableTimSort的sort实现。

 

 if (c == null) {            Arrays.sort(a, lo, hi);            return;        }

1.2) 传入的待排序数组若小于MIN_MERGE(Java实现中为32,Python实现中为64),则

a) 从数组开始处找到一组连接升序或严格降序(找到后翻转)的数
b) BinarySort:使用二分查找的方法将后续的数插入之前的已排序数组

if (nRemaining < MIN_MERGE) {            int initRunLen = countRunAndMakeAscending(a, lo, hi, c);            binarySort(a, lo, hi, lo + initRunLen, c);            return;        }

private static <T> void binarySort(T[] a, int lo, int hi, int start,                                       Comparator<? super T> c) {        assert lo <= start && start <= hi;        if (start == lo)            start++;        for ( ; start < hi; start++) {            T pivot = a[start];            // Set left (and right) to the index where a[start] (pivot) belongs            int left = lo;            int right = start;            assert left <= right;            /*             * Invariants:             *   pivot >= all in [lo, left).             *   pivot <  all in [right, start).             */            while (left < right) {                int mid = (left + right) >>> 1;                if (c.compare(pivot, a[mid]) < 0)                    right = mid;                else                    left = mid + 1;            }            assert left == right;            /*             * The invariants still hold: pivot >= all in [lo, left) and             * pivot < all in [left, start), so pivot belongs at left.  Note             * that if there are elements equal to pivot, left points to the             * first slot after them -- that's why this sort is stable.             * Slide elements over to make room for pivot.             */            int n = start - left;  // The number of elements to move            // Switch is just an optimization for arraycopy in default case            switch (n) {                case 2:  a[left + 2] = a[left + 1];                case 1:  a[left + 1] = a[left];                         break;                default: System.arraycopy(a, left, a, left + 1, n);            }            a[left] = pivot;        }    }



1.3) 开始真正的TimSort过程:

1.3.1) 选取minRun大小,之后待排序数组将被分成以minRun大小为区块的一块块子数组

a) 如果数组大小为2的N次幂,则返回16(MIN_MERGE / 2)
b) 其他情况下,逐位向右位移(即除以2),直到找到介于16和32间的一个数

int minRun = minRunLength(nRemaining);
private static int minRunLength(int n) {        assert n >= 0;        int r = 0;      // Becomes 1 if any 1 bits are shifted off        while (n >= MIN_MERGE) {            r |= (n & 1);            n >>= 1;        }        return n + r;    }


1.3.2) 类似于4.2.a找到初始的一组升序数列
1.3.3) 若这组区块大小小于minRun,则将后续的数补足(采用binary sort插入这个数组)
1.3.4) 为后续merge各区块作准备:记录当前已排序的各区块的大小
1.3.5) 对当前的各区块进行merge,merge会满足以下原则(假设X,Y,Z为相邻的三个区块):

a) 只对相邻的区块merge
b) 若当前区块数仅为2,If X<=Y,将X和Y merge
b) 若当前区块数>=3,If X<=Y+Z,将X和Y merge,直到同时满足X>Y+Z和Y>Z

do {            // Identify next run            int runLen = countRunAndMakeAscending(a, lo, hi, c);            // If run is short, extend to min(minRun, nRemaining)            if (runLen < minRun) {                int force = nRemaining <= minRun ? nRemaining : minRun;                binarySort(a, lo, lo + force, lo + runLen, c);                runLen = force;            }            // Push run onto pending-run stack, and maybe merge            ts.pushRun(lo, runLen);            ts.mergeCollapse();            // Advance to find next run            lo += runLen;            nRemaining -= runLen;        } while (nRemaining != 0);
private static <T> int countRunAndMakeAscending(T[] a, int lo, int hi,                                                    Comparator<? super T> c) {        assert lo < hi;        int runHi = lo + 1;        if (runHi == hi)            return 1;        // Find end of run, and reverse range if descending        if (c.compare(a[runHi++], a[lo]) < 0) { // Descending            while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) < 0)                runHi++;            reverseRange(a, lo, runHi);        } else {                              // Ascending            while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) >= 0)                runHi++;        }        return runHi - lo;    }



1.3.6) 重复4.3.2 ~ 4.3.5,直到将待排序数组排序完
1.3.7) Final Merge:如果此时还有区块未merge,则合并它们

assert lo == hi;        ts.mergeForceCollapse();        assert ts.stackSize == 1;

private void mergeForceCollapse() {        while (stackSize > 1) {            int n = stackSize - 2;            if (n > 0 && runLen[n - 1] < runLen[n + 1])                n--;            mergeAt(n);        }    }

private void mergeAt(int i) {        assert stackSize >= 2;        assert i >= 0;        assert i == stackSize - 2 || i == stackSize - 3;        int base1 = runBase[i];        int len1 = runLen[i];        int base2 = runBase[i + 1];        int len2 = runLen[i + 1];        assert len1 > 0 && len2 > 0;        assert base1 + len1 == base2;        /*         * Record the length of the combined runs; if i is the 3rd-last         * run now, also slide over the last run (which isn't involved         * in this merge).  The current run (i+1) goes away in any case.         */        runLen[i] = len1 + len2;        if (i == stackSize - 3) {            runBase[i + 1] = runBase[i + 2];            runLen[i + 1] = runLen[i + 2];        }        stackSize--;        /*         * Find where the first element of run2 goes in run1. Prior elements         * in run1 can be ignored (because they're already in place).         */        int k = gallopRight(a[base2], a, base1, len1, 0, c);        assert k >= 0;        base1 += k;        len1 -= k;        if (len1 == 0)            return;        /*         * Find where the last element of run1 goes in run2. Subsequent elements         * in run2 can be ignored (because they're already in place).         */        len2 = gallopLeft(a[base1 + len1 - 1], a, base2, len2, len2 - 1, c);        assert len2 >= 0;        if (len2 == 0)            return;        // Merge remaining runs, using tmp array with min(len1, len2) elements        if (len1 <= len2)            mergeLo(base1, len1, base2, len2);        else            mergeHi(base1, len1, base2, len2);    }


2. Demo

这一节用一个具体的例子来演示整个算法的演进过程:

*注意*:为了演示方便,我将TimSort中的minRun直接设置为2,否则我不能用很小的数组演示。。。同时把MIN_MERGE也改成2(默认为32),这样避免直接进入binarysort。

初始数组为[7,5,1,2,6,8,10,12,4,3,9,11,13,15,16,14]
=> 寻找连续的降序或升序序列 (4.3.2)
[1,5,7][2,6,8,10,12,4,3,9,11,13,15,16,14]
=> 入栈 (4.3.4)
当前的栈区块为[3]
=> 进入merge循环 (4.3.5)
do notmerge因为栈大小仅为1
=> 寻找连续的降序或升序序列 (4.3.2)
[1,5,7] [2,6,8,10,12][4,3,9,11,13,15,16,14]
=> 入栈 (4.3.4)
当前的栈区块为[3, 5]
=> 进入merge循环 (4.3.5)
merge因为runLen[0]<=runLen[1]
1)gallopRight:寻找run1的第一个元素应当插入run0中哪个位置(”2”应当插入”1”之后),然后就可以忽略之前run0的元素(都比run1的第一个元素小)
2)gallopLeft:寻找run0的最后一个元素应当插入run1中哪个位置(”7”应当插入”8”之前),然后就可以忽略之后run1的元素(都比run0的最后一个元素大)
这样需要排序的元素就仅剩下[5,7] [2,6],然后进行mergeLow
完成之后的结果:
[1,2,5,6,7,8,10,12][4,3,9,11,13,15,16,14]
=> 入栈 (4.3.4)
当前的栈区块为[8]
退出当前merge循环因为栈中的区块仅为1
=> 寻找连续的降序或升序序列 (4.3.2)
[1,2,5,6,7,8,10,12] [3,4][9,11,13,15,16,14]
=> 入栈 (4.3.4)
当前的栈区块大小为[8,2]
=> 进入merge循环 (4.3.5)
do not merge因为runLen[0]>runLen[1]
=> 寻找连续的降序或升序序列 (4.3.2)
[1,2,5,6,7,8,10,12] [3,4][9,11,13,15,16] [14]
=> 入栈 (4.3.4)
当前的栈区块为[8,2,5]
=>
do not merege run1与run2因为不满足runLen[0]<=runLen[1]+runLen[2]
merge run2与run3因为runLen[1]<=runLen[2]
1) gallopRight:发现run1和run2就已经排好序
完成之后的结果:
[1,2,5,6,7,8,10,12][3,4,9,11,13,15,16] [14]
=> 入栈 (4.3.4)
当前入栈的区块大小为[8,7]
退出merge循环因为runLen[0]>runLen[1]
=> 寻找连续的降序或升序序列 (4.3.2)
最后只剩下[14]这个元素:[1,2,5,6,7,8,10,12][3,4,9,11,13,15,16] [14]
=> 入栈 (4.3.4)
当前入栈的区块大小为[8,7,1]
=> 进入merge循环 (4.3.5)
merge因为runLen[0]<=runLen[1]+runLen[2]
因为runLen[0]>runLen[2],所以将run1和run2先合并。(否则将run0和run1先合并)
1) gallopRight & 2) gallopLeft
这样需要排序的元素剩下[13,15] [14],然后进行mergeHigh
完成之后的结果:
[1,2,5,6,7,8,10,12][3,4,9,11,13,14,15,16] 当前入栈的区块为[8,8]
=>
继续merge因为runLen[0]<=runLen[1]
1) gallopRight & 2) gallopLeft
需要排序的元素剩下[5,6,7,8,10,12] [3,4,9,11],然后进行mergeHigh
完成之后的结果:
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]当前入栈的区块大小为[16]
=>
不需要final merge因为当前栈大小为1
=>
结束

3,总结

通过分析我们发现,我们自己写的比较方法违背了原则

这就违背了a)原则:假设X的value为1,Y的value也为1;那么compare(X, Y) ≠ –compare(Y,X)
PS: TimSort不仅内置在各种JDK 7的版本,也存在于Android SDK中(尽管其并没有使用JDK 7)。

0 0
原创粉丝点击