ThreadLocalRandom

来源:互联网 发布:台达plc编程教学视频 编辑:程序博客网 时间:2024/06/16 01:23
private static final ThreadLocal localRandom =
new ThreadLocal() {
protected ThreadLocalRandom initialValue() {
return new ThreadLocalRandom();
}
};

ThreadLocalRandom() {
super();
initialized = true;
}


public static ThreadLocalRandom current() {
return localRandom.get();
}
采用ThreadLocal进行包装的Random子类,每线程对应一个ThreadLocalRandom实例。测试代码:
@Test
public void testInstance() {
final ThreadLocalRandom threadLocalRandom = ThreadLocalRandom.current();
final List randomList = new ArrayList();
final Phaser barrier = new Phaser(1);

new Thread() {
@Override
public void run() {
randomList.add(ThreadLocalRandom.current());
barrier.arrive();
}
}.start();

barrier.awaitAdvance(barrier.getPhase());
if (randomList.isEmpty()) {
throw new NullPointerException();
}

Assert.assertTrue(threadLocalRandom != randomList.get(0));
}
这么一包装,在性能上可以赶超Math.random(),不错。
@Test
public void testSpeed() {
final int MAX = 100000;
ThreadLocalRandom threadLocalRandom = ThreadLocalRandom.current();

long start = System.nanoTime();
for (int i = 0; i < MAX; i++) {
threadLocalRandom.nextDouble();
}
long end = System.nanoTime() - start;
System.out.println("use time1 : " + end);

long start2 = System.nanoTime();
for (int i = 0; i < MAX; i++) {
Math.random();
}
long end2 = System.nanoTime() - start2;
System.out.println("use time2 : " + end2);

Assert.assertTrue(end2 > end);
}
非规范的性能测试,某次输出结果:
use time1 : 3878481
use time2 : 8633080
性能差别不止两倍啊,哈哈。
再看Math.random(),其生成也是依赖于Random类:
private static Random randomNumberGenerator;

private static synchronized void initRNG() {
if (randomNumberGenerator == null)
randomNumberGenerator = new Random();
}

public static double random() {
if (randomNumberGenerator == null) initRNG();
return randomNumberGenerator.nextDouble();
}
很奇怪,性能为什么差那么远呢?可能个各自的next函数不同造成。看一下Random中的next(int bits)方法实现:
protected int next(int bits) {
long oldseed, nextseed;
AtomicLong seed = this.seed;
do {
oldseed = seed.get();
nextseed = (oldseed * multiplier + addend) & mask;
} while (!seed.compareAndSet(oldseed, nextseed));
return (int)(nextseed >>> (48 - bits));
}
而ThreadLocalRandom的重写版本为:
protected int next(int bits) {  
rnd = (rnd * multiplier + addend) & mask;
return (int) (rnd >>> (48-bits));
}
相比ThreadLocalRandom的next(int bits)函数实现上更为简练,不存在seed的CAS(compare and set)操作,并且少了很多的运算量。
更为详细的机制研读,请阅读参考资料中链接。
另外,ThreadLocalRandom 也提供了易用的,两个数字之间的随机数生成方式。类似于:
nextDouble(double least, double bound) 
nextInt(int least, int bound) 
nextLong(long least, long bound)
随机数的生成范围为 最小值 <= 随机数 < 最大值。可以包含最小值,但不包含最大值。 
@Test
public void testHowtoUse(){
final ThreadLocalRandom threadLocalRandom = ThreadLocalRandom.current();
final int MAX = 100;
int result = threadLocalRandom.nextInt(0, 100);
Assert.assertTrue(MAX > result);
}
完全可以使用ThreadLocalRandom替代Random,尤其是在并发、并行、多任务等环境下,会比在多线程环境下
使用公共共享的Random对象实例更为有效。

1 0