jdk源码解读-并发包-Lock-ReentrantLock(1)--lock()与unlock()方法走读

来源:互联网 发布:索信达数据 编辑:程序博客网 时间:2024/05/27 21:48

本人知乎技术文章

介绍:

ReentrantLock 是一个互斥锁,在基本行为和机制上与synchonized一样,只不过synchonized用方法和声明访问了隐式的锁监视器,但是ReentrantLock 做了功能上的扩展。

        ReentrantLock 被最后一个成功lock,但是还没unlock的线程拥有。当锁不被其他线程拥有,一个线程会成功的申请锁资源并立即返回。如果当前线程已经拥有了锁,再申请时也会立即返回。通过调用方法isHeldByCurrentThread()获取是否当前线程获得了锁,getHoldCount()得到获得几次锁资源。

此类的构造方法接受一个可选的公平 参数。当设置为 true 时,在多个线程的争用下,这些锁倾向于将访问权授予等待时间最长的线程。否则此锁将无法保证任何特定访问顺序。与采用默认设置(使用不公平锁)相比,使用公平锁的程序在许多线程访问时表现为很低的总体吞吐量(即速度很慢,常常极其慢),但是在获得锁和保证锁分配的均衡性时差异较小。不过要注意的是,公平锁不能保证线程调度的公平性。因此,使用公平锁的众多线程中的一员可能获得多倍的成功机会,这种情况发生在其他活动线程没有被处理并且目前并未持有锁时。还要注意的是,未定时的 tryLock 方法并没有使用公平设置。因为即使其他线程正在等待,只要该锁是可用的,此方法就可以获得成功。

         
     推荐使用用try-catch 块代码去调用lock(),如下:  
class X {   private final ReentrantLock lock = new ReentrantLock();   // ...   public void m() {     lock.lock();  // block until condition holds     try {       // ... method body     } finally {       lock.unlock()     }   } }}
除了实现lock接口,这个类还定义了一些public和protected方法去检查锁的状态。有些方法仅仅用来监控和维修。

    这个类的序列化行为与内建的锁一样:反序列化的锁是没有获取锁状态,无论当它序列化时是否获取锁。
    这个锁支持最大2147483647次的重入次数,超过这个数会报错。

类关系图:

        从这个图可以看到ReentrantLock类实现了接口Lock和Serializable。
    public class ReentrantLock implements Lock, java.io.Serializable {
       ReentrantLock类的API调用都委托给一个内部类 Sync ,而该类继承了 AbstractQueuedSynchronizer类;
/**  * Base of synchronization control for this lock. Subclassed  * into fair and nonfair versions below. Uses AQS state to  * represent the number of holds on the lock. */
       abstract static class Sync extends AbstractQueuedSynchronizer {
     
    而Sync又分为两个子类:公平锁和非公平锁,默认为非公平锁
       
/** * Sync object for fair locks */static final class FairSync extends Sync {
/** * Sync object for non-fair locks */static final class NonfairSync extends Sync {
       

ReentrantLock调用lock()方法时的调用关系图

    

     非公平锁类调用lock()方法时的调用关系: 

代码解析:

 

1.nofairTryAcquire:

/** * Performs non-fair tryLock.  tryAcquire is implemented in * subclasses, but both need nonfair try for trylock method. */final boolean nonfairTryAcquire(int acquires) {    final Thread current = Thread.currentThread();    int c = getState();    if (c == 0) {        if (compareAndSetState(0, acquires)) {            setExclusiveOwnerThread(current);            return true;        }    }    else if (current == getExclusiveOwnerThread()) {        int nextc = c + acquires;        if (nextc < 0) // overflow            throw new Error("Maximum lock count exceeded");        setState(nextc);        return true;    }    return false;}

首先获取当前状态(初始化为0),当它等于0的时候,代表还没有任何线程获得该锁,然后通过CAS(底层是通过CompareAndSwapInt实现)改变state,如果设置成功设置当前线程为持有锁的线程;其他线程会直接返回false;当该线程重入的时候,state已经不等于0,这个时候并不需要CAS,因为该线程已经持有锁,然后会重新通过setState设置state的值,这里就实现了一个偏向锁的功能,即锁偏向该线程;

2.acquireQueued

只有当锁被一个线程持有,另外一个线程请求获得该锁的时候才会进入这个方法。

调用前首先调用addWaiter

addWaiter

/** * Creates and enqueues node for current thread and given mode. * * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared * @return the new node */private Node addWaiter(Node mode) {    Node node = new Node(Thread.currentThread(), mode);    // Try the fast path of enq; backup to full enq on failure    Node pred = tail;    if (pred != null) {        node.prev = pred;        if (compareAndSetTail(pred, node)) {            pred.next = node;            return node;        }    }    enq(node);    return node;}
首先,new一个节点,这个时候模式为:mode为 Node.EXCLUSIVE,默认为null即排它锁;

然后:

如果该队列已经有node即tail!=null,则将新节点的前驱节点置为tail,再通过CAS将tail指向当前节点,前驱节点的后继节点指向当前节点,然后返回当前节点;

如果队列为空或者CAS失败,则通过enq入队:

/** * Inserts node into queue, initializing if necessary. See picture above. * @param node the node to insert * @return node's predecessor */private Node enq(final Node node) {    for (;;) {        Node t = tail;        if (t == null) { // Must initialize            if (compareAndSetHead(new Node()))                tail = head;        } else {            node.prev = t;            if (compareAndSetTail(t, node)) {                t.next = node;                return t;            }        }    }}

进队的时候,要么是第一个入队并且设置head节点并且循环设置tail,要么是add tail,如果CAS不成功,则会无限循环,直到设置成功,即使高并发的场景,也最终能够保证设置成功,然后返回包装好的node节点;


 acquireQueued:

/** * Acquires in exclusive uninterruptible mode for thread already in * queue. Used by condition wait methods as well as acquire. * * @param node the node * @param arg the acquire argument * @return {@code true} if interrupted while waiting */final boolean acquireQueued(final Node node, int arg) {    boolean failed = true;    try {        boolean interrupted = false;        for (;;) {            final Node p = node.predecessor();            if (p == head && tryAcquire(arg)) {                setHead(node);                p.next = null; // help GC                failed = false;                return interrupted;            }            if (shouldParkAfterFailedAcquire(p, node) &&                parkAndCheckInterrupt())                interrupted = true;        }    } finally {        if (failed)            cancelAcquire(node);    }}

该方法的主要作用就是真正让node入队,同时将已经进入虚拟队列的节点进行阻塞,我们看到,如果当前节点的前驱节点是head并且尝试获取锁的时候成功了,则直接返回,不需要阻塞;

如果前驱节点不是头节点或者获取锁的时候失败了,则进行判定是否需要阻塞:

/** * Checks and updates status for a node that failed to acquire. * Returns true if thread should block. This is the main signal * control in all acquire loops.  Requires that pred == node.prev. * * @param pred node's predecessor holding status * @param node the node * @return {@code true} if thread should block */private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {    int ws = pred.waitStatus;    if (ws == Node.SIGNAL)        /*         * This node has already set status asking a release         * to signal it, so it can safely park.         */        return true;    if (ws > 0) {        /*         * Predecessor was cancelled. Skip over predecessors and         * indicate retry.         */        do {            node.prev = pred = pred.prev;        } while (pred.waitStatus > 0);        pred.next = node;    } else {        /*         * waitStatus must be 0 or PROPAGATE.  Indicate that we         * need a signal, but don't park yet.  Caller will need to         * retry to make sure it cannot acquire before parking.         */        compareAndSetWaitStatus(pred, ws, Node.SIGNAL);    }    return false;}

这段代码对该节点的前驱节点的状态进行判断,如果前驱节点已经处于signal状态,则返回true,表明当前节点可以进入阻塞状态;

否则,将前驱节点状态CAS置为signal状态,然后通过上层的for循环进入parkAndCheckInterrupt代码块park:

/** * Convenience method to park and then check if interrupted * * @return {@code true} if interrupted */private final boolean parkAndCheckInterrupt() {    LockSupport.park(this);    return Thread.interrupted();}

这个时候将该线程交给操作系统内核进行阻塞;

总体来讲,acquireQueued就是依靠前驱节点的状态来决定当前线程是否应该处于阻塞状态,如果前驱节点处于cancel状态,则丢弃这些节点,重新构建队列;

公平锁类调用lock()方法时的调用关系: 



非公平锁类和公平锁类调用lock()时的区别:

1.非公平锁类调用lock()时,不排队先尝试获取锁资源,修改状态,修改不成功再入队。具体实现先调用AbstractQueuedSynchronizer的方法

protected final boolean compareAndSetState(int expect, int update) ,而公平锁类是直接入队,不给插队的机会,当直接插队失败才会入队。
2.调用tryAcquire()时也不同,
1.公平锁类的tryAcquire()
/** * Fair version of tryAcquire.  Don't grant access unless * recursive call or no waiters or is first. */protected final boolean tryAcquire(int acquires) {    final Thread current = Thread.currentThread();    int c = getState();    if (c == 0) {        if (!hasQueuedPredecessors() &&            compareAndSetState(0, acquires)) {            setExclusiveOwnerThread(current);            return true;        }    }    else if (current == getExclusiveOwnerThread()) {        int nextc = c + acquires;        if (nextc < 0)            throw new Error("Maximum lock count exceeded");        setState(nextc);        return true;    }    return false;}
2.非公平锁的tryAcquire()
protected final boolean tryAcquire(int acquires) {    return nonfairTryAcquire(acquires);}
/** * Performs non-fair tryLock.  tryAcquire is implemented in * subclasses, but both need nonfair try for trylock method. */final boolean nonfairTryAcquire(int acquires) {    final Thread current = Thread.currentThread();    int c = getState();    if (c == 0) {        if (compareAndSetState(0, acquires)) {            setExclusiveOwnerThread(current);            return true;        }    }    else if (current == getExclusiveOwnerThread()) {        int nextc = c + acquires;        if (nextc < 0) // overflow            throw new Error("Maximum lock count exceeded");        setState(nextc);        return true;    }    return false;}
公平锁类先调用!hasQueuedPredecessors()检查此节点前面有没有非头节点的节点。这样保证了顺序的获得锁资源。非公平锁不调用!hasQueuedPredecessors()直接CAS

再来看unlock():
1.调用流程图:
  
1.Reentantlock方法unlock():
  
public void unlock() {        sync.release(1);    }

unlock()调用AbstractQueuedSynchronizer的release。

2.AbstractQueuedSynchronizer的release(int arg):

 public final boolean release(int arg) {        if (tryRelease(arg)) {            Node h = head;            if (h != null && h.waitStatus != 0)                unparkSuccessor(h);            return true;        }        return false;    }

tryRelease(arg)为true则调用unparkSucessor(h),否则直接返回false。

3.我们再来看tryRelease(arg):

protected final boolean tryRelease(int releases) {            int c = getState() - releases;            if (Thread.currentThread() != getExclusiveOwnerThread())                throw new IllegalMonitorStateException();            boolean free = false;            if (c == 0) {                free = true;                setExclusiveOwnerThread(null);            }            setState(c);            return free;        }


当释放锁的thread与当前获得锁的线程不一致时,抛出异常,参数releasese是要释放的重入锁的个数,c是释放后还剩几个。如果c==0则返回true。无论返回是true还是false都会更新state的值。state为零说明锁资源已经可以竞争了,非零说明锁资源还在某个线程没有释放。如果为零,下一步应该是唤醒一个线程,使这个线程获得竞争锁的权利。

4.unparkSucessor(h):
   
/**     * Wakes up node's successor, if one exists.     *     * @param node the node     */    private void unparkSuccessor(Node node) {        /*         * If status is negative (i.e., possibly needing signal) try         * to clear in anticipation of signalling.  It is OK if this         * fails or if status is changed by waiting thread.         */        int ws = node.waitStatus;        if (ws < 0)            compareAndSetWaitStatus(node, ws, 0);        /*         * Thread to unpark is held in successor, which is normally         * just the next node.  But if cancelled or apparently null,         * traverse backwards from tail to find the actual         * non-cancelled successor.         */        Node s = node.next;        if (s == null || s.waitStatus > 0) {            s = null;            for (Node t = tail; t != null && t != node; t = t.prev)                if (t.waitStatus <= 0)                    s = t;        }        if (s != null)            LockSupport.unpark(s.thread);    }

这个作用即:当头结点的状态小于0,则将头结点的状态CAS为0,然后通过链表获取下一个节点,如果下一个节点为null或者不符合要求的状态,则从队尾遍历整个链表,直到遍历到离head节点最近的一个节点并且等待状态符合预期,则将头结点的后继节点置为该节点;

对刚刚筛出来的符合要求的节点唤醒,也就是该节点获得 争夺 锁的权利。



最后让我们回到调用lock()时,线程被park的那段代码:

/** * Acquires in exclusive uninterruptible mode for thread already in * queue. Used by condition wait methods as well as acquire. * * @param node the node * @param arg the acquire argument * @return {@code true} if interrupted while waiting */final boolean acquireQueued(final Node node, int arg) {    boolean failed = true;    try {        boolean interrupted = false;        for (;;) {            final Node p = node.predecessor();            if (p == head && tryAcquire(arg)) {                setHead(node);                p.next = null; // help GC                failed = false;                return interrupted;            }            if (shouldParkAfterFailedAcquire(p, node) &&                parkAndCheckInterrupt())                interrupted = true;        }    } finally {        if (failed)            cancelAcquire(node);    }}

也就是说for循环又可以继续跑了,去做一系列的判断,并尝试获得锁,上面已经讲了,不再说了。这样,线程从lock()到unlock()发生的事情都大体讲清楚了。下一节,会分析await()和singnal()。

0 0
原创粉丝点击