博弈原理

来源:互联网 发布:淘宝店铺地址在哪里看 编辑:程序博客网 时间:2024/06/03 18:34

一.巴什博奕(Bash Game):

首先我们来玩一个比较古老的报数游戏。A和B一起报数,每个人每次最少报一个,最多报4个。轮流报数,看谁先报到30.

如果不知道巴什博弈的可能会觉得这个是个有运气成分的问题,但是如果知道的人一定知道怎样一定可以赢。

比如A先报数的话,那么B一定可以赢(这里假定B知道怎么正确的报数)

B可以这样报数,每次报5-k(A)个数,其中k(A)是A报数的个数这样的话没一次

两人报完数之后会变成5 10 15 20 25 30这样是不是B一定会赢呢?是不是有一种被欺骗的感觉呢?好吧下面我们来看看这个原理。我们先看下一个一眼就能看出答案的例子 比如说我们报到5(4+1),每次报最多报4个,最少报1个.那么是不是后者一定可以赢呢?答案是肯定的。好了到这巴什博弈的精髓基本就OK了。

那么如果我们要报到n+1,每次最多报n个,最少报1个的话,后者一定能够赢。

现在我们需要报数到n,而每次最多报数m个,最少报数1个.我们可以化成这样

n = k*(1+m)+r(0 <= r <= m)这样的话如果r不等于0那么先手一定会赢,为什么呢?首先先手报r个,那么剩下k倍(1+m)个数,那么我们每次报数1+m-k(B)个数就一定能保证最后剩下1+m个,那么就到了上面我们说的那个了,先手就一定会赢,如果r=0那么后手一定会赢,道理一样的。

到这巴什博弈也就介绍完了,知道这个道理之后我们也可以去骗小朋友了。-_-//

 

 

威佐夫博弈是博弈中的另一个经典模型。

 

问题:首先有两堆石子,博弈双方每次可以取一堆石子中的任意个,不能不取,或者取两堆石子中的相同个。先取完者赢。

分析:首先我们根据条件来分析博弈中的奇异局势

      第一个(0 , 0),先手输,当游戏某一方面对( 0 , 0)时,他没有办法取了,那么肯定是先手在上一局取完了,那么输。

第二个 1  , 2  ),先手输,先手只有四种取法,

1)取 1 中的一个,那么后手取第二堆中两个。

2)取 2 中一个,那么后手在两堆中各取一个。

3)在 2 中取两个,那么后手在第一堆中取一个。

4)两堆中各取一个,那么后手在第二堆中取一个。

可以看出,不论先手怎么取,后说总是能赢。所以先手必输!

第三个 3 , 5 ),先手必输。首先先手必定不能把任意一堆取完,如果取完了很明显后手取完另一堆先手必输,那么

假如看取一堆的情况,假设先手先在第一堆中取。 1 个,后手第二堆中取4个,变成(1 ,2)了,上面分析了是先手的必输局。

 取 2 个,后手第二堆中取3个,也变成( 1 , 2)局面了。

假设先手在第二堆中取,取 1 个,那么后手在两堆中各取 2 个,也变成 ( 1 , 2 )局面了。

   取 2 个 ,那么后手可以两堆中都去三个, 变成 ( 0 , 0)局面,上面分析其必输。

   取  3  个,后手两堆各取 1 个 ,变成( 1 , 2)局面了。

  取 4 个,后手在第一堆中取一个,变成( 1 , 2)局面了。

可见不论先手怎么取,其必输!

第四个(4  , 7),先手必输。

自己推理可以发现不论第一次先手如何取,那么后手总是会变成前面分析过的先手的必输局面。

那么到底有什么规律没有呢,我们继续往下写。

第四个 6 ,10  )

第五个 8 ,13)

第六个 9 , 15)

第七个 11 ,18)

会发现他们的差值是递增的,为 0 , 1 , 2, 3, 4 , 5 , 6, 7.....n

而用数学方法分析发现局面中第一个值为前面局面中没有出现过的第一个值,比如第三个局面,前面出现了 0  1 2,那么第三个局面的第一个值为 3 ,比如第五个局面,前

面出现了 0  1  2 3 4 5 ,那么第五个局面第一个值为6。

再找规律的话我们会发现,第一个值 = 差值 * 1.618 

1.618 = (sqrt(5)+ 1) /  2 。

大家都知道0.618是黄金分割率。而威佐夫博弈正好是1.618,这就是博弈的奇妙之处!

 

 

下面来看看威佐夫博弈常见的三类问题:

 

1)给你一个局面,让你求是先手输赢。

有了上面的分析,那么这个问题应该不难解决。首先求出差值,差值 * 1.618 == 最小值 的话后手赢,否则先手赢。(注意这里的1.618最好是用上面式子计算出来的,否则精

度要求高的题目会错)

 

2)给你一个局面,让你求先手输赢,假设先手赢的话输出他第一次的取法。

       首先讨论在两边同时取的情况,很明显两边同时取的话,不论怎样取他的差值是不会变的,那么我们可以根据差值计算出其中的小的值,然后加上差值就是大的一个值,当

然能取的条件是求出的最小的值不能大于其中小的一堆的石子数目。

      加入在一堆中取的话,可以取任意一堆,那么其差值也是不定的,但是我们可以枚举差值,差值范围是0 --- 大的石子数目,然后根据上面的理论判断满足条件的话就是一种合理的取法。

三、尼姆博弈(Nimm's Game)

题型

尼姆博弈模型,大致上是这样的:

3堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取1个,多者不限,最后取光者得胜。

分析

1、首先自己想一下,就会发现只要最后剩两堆物品一样多(不为零),第三堆为零,那面对这种局势的一方就必败

那我们用(a,b,c)表示某种局势,首先(0,0,0)显然是必败态,无论谁面对(0,0,0) ,都必然失败;第二种必败态是(0,n,n),自己在某一堆拿走k(k ≤ n)个物品,不论k为多少,对方只要在另一堆拿走k个物品,最后自己都将面临(0,0,0)的局势,必败。仔细分析一下,(1,2,3)也是必败态,无论自己如何拿,接下来对手都可以把局势变为(0,n,n)的情形

那这种奇异局势有什么特点呢?

也不知谁这么牛逼,竟然能把这种局势和二进制联系在一起

这里说一种运算符号,异或'^',a^b=a'b+ab'(a'为非a)

 

我们用符号XOR表示这种运算,这种运算和一般加法不同的一点是1 XOR 1 = 0。先看(1,2,3)的按位模2加的结果:

1 = 二进制01

2 = 二进制10

3 = 二进制11  XOR

———————

0 = 二进制00 (注意不进位)

 

对于奇异局势(0,n,n)也一样,结果也是0

任何奇异局势(a,b,c)都有a XOR b XOR c = 0

 

如果我们面对的是一个非必败态(a,b,c),要如何变为必败态呢?

假设 a < b < c,我们只要将 c 变为a XOR b,即可。因为有如下的运算结果:

a XOR b XOR (a XOR b)=(a XOR a) XOR (b XOR b) = 0 XOR 0 = 0

要将c 变为a XOR b,只要对 c进行 c-(a XOR b)这样的运算即可

 

2、尼姆博弈模型可以推广到:有n堆若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

这个游戏中的变量是堆数k和各堆的物品数N1,N2,……,Nk。

对应的组合问题是,确定先手获胜还是后手获胜以及两个游戏人应该如何取物品才能保证自己获胜

 

3、为了进一步理解Nim取物品游戏,我们看看特殊情况。

如果游戏开始时只有一堆物品,先手则通过取走所有的物品而获胜。现在设有2堆物品,且物品数量分别为N1和N2。游戏者取得胜利并不在于N1和N2的值具体是多少,而是取决于它们是否相等。

也就说两堆的策略我们有了,现在我们如何从两堆的取子策略扩展到任意堆数中呢?

 

首先回忆一下,每个正整数都有对应的一个二进制数,例如:57(10) = 111001(2) ,即:57(10)=25+24+23+20。于是,我们可以认为每一堆物品数由2的幂数的子堆组成。这样,含有57枚物品大堆就能看成是分别由数量为25、24、23、20的各个子堆组成

 

现在考虑各大堆大小分别为N1,N2,……Nk的一般的Nim博弈。将每一个数Ni表示为其二进制数(数的位数相等,不等时在前面补0):

N1 = as…a1a0

N2 = bs…b1b0

……

Nk = ms…m1m0

如果每一种大小的子堆的个数都是偶数,我们就称Nim博弈是平衡的,而对应位相加是偶数的称为平衡位,否则称为非平衡位。因此,Nim博弈是平衡的,当且仅当:

as +bs + … + ms 是偶数,即as XOR bs XOR … XOR ms  = 0

……

a1 +b1 + … + m1 是偶数,即a1 XOR b1 XOR … XOR m1 = 0

a0 +b0 + … + m0是偶数,即a0 XOR b0 XOR … XOR m0 = 0

  

于是,我们就能得出尼姆博弈中先手获胜策略:

Bouton定理:先手能够在非平衡尼姆博弈中取胜,而后手能够在平衡的尼姆博弈中取胜。即状态(x1, x2, x3, …, xn)为P状态当且仅当x1 xor x2 xor x3 xor … xor xn =0。这样的操作也称为Nim和(Nim Sum)

我们以一个两堆物品的尼姆博弈作为试验。设游戏开始时游戏处于非平衡状态。这样,先手就能通过一种取子方式使得他取子后留给后手的是一个平衡状态下的游戏,接着无论后手如何取子,再留给先手的一定是一个非平衡状态游戏,如此反复进行,当后手在最后一次平衡状态下取子后,先手便能一次性取走所有的物品而获胜。而如果游戏开始时游戏牌平衡状态,那根据上述方式取子,最终后手能获

 

下面应用此获胜策略来考虑4堆的Nim博弈。其中各堆的大小分别为7,9,12,15枚硬币。用二进制表示各数分别为:0111,1001,1100和1111

于是可得到如下一表:

Nim博弈的平衡条件可知,此游戏是一个非平衡状态的Nim博弈,因此,先手在按获胜策略一定能够取得最终的胜利。具体做法有多种,先手可以从大小为12的堆中取走11枚硬币,使得游戏达到平衡(如下表)

 

之后,无论后手如何取子,先手在取子后仍使得游戏达到平衡

 

同样的道理,先手也可以选择大小为9的堆并取走5枚硬币而剩下4枚,或者,先手从大小为15的堆中取走13枚而留下2枚

归根结底, Nim博弈的关键在于游戏开始时游戏处于何种状态(平衡或非平衡)和先手是否能够按照取子游戏的获胜策略来进行游戏

当堆数大于2时,我们看出Bouton定理依旧适用,下面用数学归纳法证明

  

证明:

如果每堆都为0,显然是P状态(必败)。下面验证P状态和N状态的后两个递推关系:

一、每个N状态都可以一步到达P状态。

证明是构造性的。检查Nim和X的二进制表示中最左边一个1,则随便挑一个该位为1的物品堆Y,根据Nim和进行调整(0变1,1变0)即可。例如Nim和为100101011,而其中有一堆为101110001。为了让Nim和变为0,只需要让操作的物品数取操作前的物品数和Nim的异或即可

显然操作后物品数变小,因此和合法的。设操作前其他堆的Nim和为Z,则有Y xor Z = X。操作后的Nim和为X xor Y xor Z = X xor X = 0,是一个P状态

二、每个P状态(必胜态)都不可以一步到达P状态

由于只能改变一堆的物品,不管修改它的哪一位,Nim的对应位一定不为0,不可能是P状态。

这样就证明了Bouton定理

 

实际解决

Nim博弈中如果规定最后取光者输,情况是怎样的?

初看起来问题要复杂很多(因为不能主动拿了,而要“躲着”拿,以免拿到最后一个物品),但对于Nim游戏来说,几乎是一样的:

首先按照普通规则一样的策略进行,直到恰好有一个物品数大于1的堆x。在这样的情况下,只需要把堆x中的物品拿得只剩1个物品或者拿完,让对手面临奇数堆物品,这奇数堆物品每堆恰好1个物品。这样的状态显然是必败的。由于你每次操作后需要保证Nim和为0,因此不可能在你操作后首次出现“恰好有一个物品数大于1的堆”。新游戏得到了完美解决

四、斐波那契博弈

有一堆个数为n的石子,游戏双方轮流取石子,满足:

1)先手不能在第一次把所有的石子取完;

2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍)。

约定取走最后一个石子的人为赢家,求必败态。

这个和之前的Wythoff’s Game 和取石子游戏 有一个很大的不同点,就是游戏规则的动态化。之前的规则中,每次可以取的石子的策略集合是基本固定的,但是这次有规则2:一方每次可以取的石子数依赖于对手刚才取的石子数。

这个游戏叫做Fibonacci Nim,肯定和Fibonacci数列:f[n]:1,2,3,5,8,13,21,34,55,89,… 有密切的关系。如果试验一番之后,可以猜测:先手胜当且仅当n不是Fibonacci数。换句话说,必败态构成Fibonacci数列。

就像“Wythoff博弈”需要“Beatty定理”来帮忙一样,这里需要借助“Zeckendorf定理”(齐肯多夫定理):任何正整数可以表示为若干个不连续的Fibonacci数之和。

先看看FIB数列的必败证明:

1、当i=2时,先手只能取1颗,显然必败,结论成立。

2、假设当i<=k时,结论成立。

     则当i=k+1时,f[i] = f[k]+f[k-1]。

     则我们可以把这一堆石子看成两堆,简称k堆和k-1堆。

    (一定可以看成两堆,因为假如先手第一次取的石子数大于或等于f[k-1],则后手可以直接取完f[k],因为f[k] < 2*f[k-1])

     对于k-1堆,由假设可知,不论先手怎样取,后手总能取到最后一颗。下面我们分析一下后手最后取的石子数x的情况。

     如果先手第一次取的石子数y>=f[k-1]/3,则这小堆所剩的石子数小于2y,即后手可以直接取完,此时x=f[k-1]-y,则x<=2/3*f[k-1]。

     我们来比较一下2/3*f[k-1]与1/2*f[k]的大小。即4*f[k-1]与3*f[k]的大小,由数学归纳法不难得出,后者大。

     所以我们得到,x<1/2*f[k]。

     即后手取完k-1堆后,先手不能一下取完k堆,所以游戏规则没有改变,则由假设可知,对于k堆,后手仍能取到最后一颗,所以后手必胜。

     即i=k+1时,结论依然成立。

对于不是FIB数,首先进行分解。

分解的时候,要取尽量大的Fibonacci数。

比如分解85:85在55和89之间,于是可以写成85=55+30,然后继续分解30,30在21和34之间,所以可以写成30=21+9,

依此类推,最后分解成85=55+21+8+1。

则我们可以把n写成  n = f[a1]+f[a2]+……+f[ap]。(a1>a2>……>ap)

我们令先手先取完f[ap],即最小的这一堆。由于各个f之间不连续,则a(p-1) > ap  + 1,则有f[a(p-1)] > 2*f[ap]。即后手只能取f[a(p-1)]这一堆,且不能一次取完。

此时后手相当于面临这个子游戏(只有f[a(p-1)]这一堆石子,且后手先取)的必败态,即先手一定可以取到这一堆的最后一颗石子。

同理可知,对于以后的每一堆,先手都可以取到这一堆的最后一颗石子,从而获得游戏的胜利。

 

 

0 0
原创粉丝点击