算法中的NP问题

来源:互联网 发布:哪个洗衣店好 知乎 编辑:程序博客网 时间:2024/06/05 18:54
在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。
    生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你他可以因式分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。 不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克于1971年陈述的。

     多项式时间:在计算复杂度理论中,指的是一个问题的计算时间m(n)不大于问题大小n的多项式倍数。通俗点来说,多项式时间就是指时间复杂度是个多项式,或者说,就是这个程序运行的时间随着数据规模n变化的函数为f(n),那么,f(n)是个多项式函数,那么就可以说是控制在多项式之内。举个例子,现在从n阶图中找两点的最短路径,复杂度为n^2级别(即O(n^2),O是大写欧),而n^2对于n是多项式(单项式当然也算),这就称为是多项式复杂度,或者多项式时间,其中问题(算法)的规模是n。如果某一个算法的规模是n,但是复杂度比如是2^n,写不成n的多项式,那就不是多项式时间。
    P类问题:所有可以在多项式时间内求解的判定问题构成P类问题。判定问题:判断是否有一种能够解决某一类问题的能行算法的研究课题。
    NP类问题:所有的非确定性多项式时间可解的判定问题构成NP类问题。非确定性算法:非确定性算法将问题分解成猜测和验证两个阶段。算法的猜测阶段是非确定性的,算法的验证阶段是确定性的,它验证猜测阶段给出解的正确性。设算法A是解一个判定问题Q的非确定性算法,如果A的验证阶段能在多项式时间内完成,则称A是一个多项式时间非确定性算法。有些计算问题是确定性的,比如加减乘除之类,你只要按照公式推导,按部就班一步步来,就可以得到结果。但是,有些问题是无法按部就班直接地计算出来。比如,找大质数的问题。有没有一个公式,你一套公式,就可以一步步推算出来,下一个质数应该是多少呢?这样的公式是没有的。再比如,大的合数分解质因数的问题,有没有一个公式,把合数代进去,就直接可以算出,它的因子各自是多少?也没有这样的公式。这种问题的答案,是无法直接计算得到的,只能通过间接的“猜算”来得到结果。这也就是非确定性问题。而这些问题的通常有个算法,它不能直接告诉你答案是什么,但可以告诉你,某个可能的结果是正确的答案还是错误的。这个可以告诉你“猜算”的答案正确与否的算法,假如可以在多项式(polynomial)时间内算出来,就叫做多项式非确定性问题。

    NPC问题:NP中的某些问题的复杂性与整个类的复杂性相关联.这些问题中任何一个如果存在多项式时间的算法,那么所有NP问题都是多项式时间可解的.这些问题被称为NP-完全问题(NPC问题)。
    P类问题,NP类问题,NPC之间的关系可有下图(此图正确性有待证明)表示:

总结:

    P类问题是可以在多项式时间内解决的,polynomial problem。
    NP类问题,可以在多项式的时间里验证一个解的问题,non deterministic polynomial
    NPC问题,最不可能转换为p决定的问题的集合,np complete

一.NP难问题及P类问题
为了解释NP难问题及P类问题,先介绍确定性算法和非确定性算法这两个概念,设A是求解问题Π的一个算法,如果在算法的整个执行过程中,每一步只有一个确定的选择,则称算法A是确定性(Determinism)算法。设A是求解问题Π的一个算法,如果算法A以如下猜测并验证的方式工作,就称算法A是非确定性(Nondeterminism)算法:(1)猜测阶段:在这个阶段,对问题的输入实例产生一个任意字符串y,在算法的每一次运行时,串y的值可能不同,因此,猜测以一种非确定的形式工作。(2)验证阶段:在这个阶段,用一个确定性算法验证:① 检查在猜测阶段产生的串y是否是合适的形式,如果不是,则算法停下来并得到no;② 如果串y是合适的形式,则验证它是否是问题的解,如果是,则算法停下来并得到yes,否则算法停下来并得到no。
什么是NP难问题,如果对于某个判定问题Π,存在一个非负整数k,对于输入规模为n的实例,能够以O(nk)的时间运行一个非确定性算法,得到yes或no的答案,则该判定问题Π是一个 NP 类(Nondeterministic Polynomial)问题。
令Π是一个判定问题,如果对于NP类问题中的每一个问题Π',都有Π'∝pΠ,则称判定问题Π是一个NP难问题。
什么是P类问题,如果对于某个判定问题Π,存在一个非负整数k,对于输入规模为n的实例,能够以O(nk)的时间运行一个确定性算法,得到yes或no的答案,则该判定问题Π是一个 P 类(Polynomial)问题。所有易解问题都是P类问题。
P类问题和NP类问题的主要差别:P类问题可以用多项式时间的确定性算法来进行判定或求解;NP类问题可以用多项式时间的非确定性算法来进行判定或求解。
二.常见的NP类问题
上面介绍了什么是NP问题,下面我将介绍我查阅到的一些常见的NP问题,他们同时也是著名的NP问题。
①图着色问题 :按图中所示方式将16条边着色,那么不管你从哪里出发,按照“蓝红红蓝红红蓝红红”的路线走9步,你最后一定达到黄色顶点。路线着色定理就是说在满足一定条件的有向图中,这样的着色方式一定存在。严格的数学描述如下。我们首先来定义同步着色。G是一个有限有向图并且G的每个顶点的出度都是k。G的一个同步着色满足以下两个条件:1)G的每个顶点有且只有一条出边被染成了1到k之间的某种颜色;2)G的每个顶点都对应一种走法,不管你从哪里出发,按该走法走,最后都结束在该顶点。有向图G存在同步着色的必要条件是G是强连通而且是非周期的。一个有向图是非周期的是指该图中包含的所有环的长度没有大于1的公约数。路线着色定理这两个条件(强连通和是非周期)也是充分的。也就是说,有向图G存在同步着色当且仅当G是强连通而且是非周期的。

②哈密顿回路问题:天文学家哈密顿(William Rowan Hamilton) 提出,在一个有多个城市的地图网络中, 寻找一条从给定的起点到给定的终点沿途恰好经过所有其他城市一次的路径。这个问题和著名的过桥问题的不同之处在于,某些城市之间的旅行不一定是双向的。比如A→B,但B→A是不允许的。换一种说法,对于一个给定的网络,确定起点和终点后,如果存在一条路径,穿过这个网络,我们就说这个网络存在哈密顿路径。哈密顿路径问题在上世纪七十年代初,终于被证明是“NP完备”的。据说具有这样性质的问题,难于找到一个有效的算法。实际上对于某些顶点数不到100的网络,利用现有最好的算法和计算机也需要很长的时间(可能要几百年之久)才能确定其是否存在一条这样的路径。
③TSP问题:旅行商问题,即TSP问题(Traveling Salesman Problem)是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路经的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。TSP问题是一个组合优化问题。该问题可以被证明具有NPC计算复杂性。
上面三个即是非常著名的NP问题,也是比较常见的NP问题。它们的求解算法非常复杂,要寻找到一个最优算法需要花费很长的时间,但正因为这些问题的复杂性,使得它们备受人们的关注。当然NP问题本身也是世界七大数学难题之一。
三.求解NP类问题的常见方法
对于那些棘手的NP问题,我们也并非束手无策,有一些方法可供我们去探究NP问题。
①近似算法:所有已知的解决NP难问题算法都有指数型运行时间。但是,如果我们要找一个“好”解而非最优解,有时候多项式算法是存在的。给定一个最小化问题和一个近似算法,我们按照如下方法评价算法:首先给出最优解的一个下界,然后把算法的运行结果与这个下界进行比较。对于最大化问题,先给出一个上界然后把算法的运行结果与这个上界比较。近似算法比较经典的问题包括:最小顶点覆盖、旅行售货员问题、集合覆盖等。
②概率算法:很多算法的每一个计算步骤都是固定的,而概率算法允许算法在执行的过程中随机选择下一个计算步骤。许多情况下,当算法在执行过程中面临一个选择时,随机性选择常比最优选择省时。因此概率算法可在很大程度上降低算法的复杂度。概率算法的一个基本特征是对所求解问题的同一实例用同一概率算法求解两次可能得到完全不同的效果。这两次求解问题所需的时间甚至所得到的结果可能会有相当大的差别。一般情况下,可将概率算法大致分为四类:数值概率算法,蒙特卡罗(Monte Carlo)算法,拉斯维加斯(Las Vegas)算法和舍伍德(Sherwood)算法。
③并行计算:并行计算或称平行计算是相对于串行计算来说的。所谓并行计算可分为时间上的并行和空间上的并行。 时间上的并行就是指流水线技术,而空间上的并行则是指用多个处理器并发的执行计算。并行计算(Parallel Computing)是指同时使用多种计算资源解决计算问题的过程。为执行并行计算,计算资源应包括一台配有多处理机(并行处理)的计算机、一个与网络相连的计算机专有编号,或者两者结合使用。并行计算的主要目的是快速解决大型且复杂的计算问题。此外还包括:利用非本地资源,节约成本 ― 使用多个“廉价”计算资源取代大型计算机,同时克服单个计算机上存在的存储器限制。包含以下三个特征:1,将工作分离成离散部分,有助于同时解决;2,随时并及时地执行多个程序指令;,3,多计算资源下解决问题的耗时要少于单个计算资源下的耗时。
④智能算法:在工程实践中,经常会接触到一些比较“新颖”的算法或理论,比如模拟退火,遗传算法,禁忌搜索,神经网络等。这些算法或理论都有一些共同的特性(比如模拟自然过程),通称为“智能算法”。智能优化算法要解决的一般是最优化问题。最优化问题可以分为(1)求解一个函数中,使得函数值最小的自变量取值的函数优化问题和(2)在一个解空间里面,寻找最优解,使目标函数值最小的组合优化问题。典型的组合优化问题有:旅行商问题(Traveling Salesman Problem,TSP),加工调度问题(Scheduling Problem),0-1背包问题(Knapsack Problem),以及装箱问题(Bin Packing Problem)等。优化算法有很多,经典算法包括:有线性规划,动态规划等;改进型局部搜索算法包括爬山法,最速下降法等,本文介绍的模拟退火、遗传算法以及禁忌搜索称作指导性搜索法。而神经网络,混沌搜索则属于系统动态演化方法。
四.NP问题求解未来发展方向
NP问题是世界七大数学难题之一,在名称上就有别于其它六个问题,也是其中唯一一个不是用人名来命名的数学难题。因为它不是某个数学家火花一闪、灵机一动所提出的理论或是猜测,而是一个非常古老的问题,涉及到了最基础的数学理论,并且经过了几百年来无数数学家们持之以恒的努力,直到现在仍然是一个没有得到解决的公开问题。
NP问题排在世界七大数学难题之首,七个问题都是经过美国克雷数学研究所的科学顾问委员会精心挑选出来的,这些问题的获解上哪怕是获得了些许的进展,就将对数学理论的发展和应用产生极其巨大的推动作用。研究这些“千年大奖问题”已经成为世界数学界的热点,不少国家的数学家正在组织联合攻关,同时它们也是任何一个数学工作者都梦寐以求予以摘取的数学皇冠上的耀眼明珠。可以预期,这些“千年大奖问题”将会改变新世纪数学发展的历史进程。因此NP问题的求解将会不断地被注视着,当然如果有一天它被人求解出来,那么我们身边的许多问题将会被解决。

搜索方法
    近邻法(nearest neighbor) 推销员从某个城镇出发,永远选择前往最近且尚未去过的城镇,最后再返回原先的出发点。这方法简单,也许是多数人的直觉做法,但是近邻法的短视使其表现非常不好,通常后段的路程会非常痛苦。
插入法(insertion) 先产生连接部分点的子路线,再根据某种法则将其它的点逐一加入路线。比如最近插入法(nearest insertion),先针对外围的点建构子路线,然后从剩余的点里面评估何者加入后路线总长度增加的幅度最小,再将这个点加入路线。又比如最远插入法(farthest insertion),是从剩余的点里面选择距离子路线最远的点,有点先苦后甜的滋味。
    模拟退火算法(Recuit Algorithm) 来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解。
遗传算法是仿真生物遗传学和自然选择机理,通过人工方式所构造的一类搜索算法,从某种程度上说遗传算法是对生物进化过程进行的数学方式仿真。生物种群的生存过程普遍遵循达尔文进化准则,群体中的个体根据对环境的适应能力而被大自然所选择或淘汰。进化过程的结果反映在个体的结构上,其染色体包含若干基因,相应的表现型和基因型的联系体现了个体的外部特性与内部机理间逻辑关系。通过个体之间的交叉、变异来适应大自然环境。生物染色体用数学方式或计算机方式来体现就是一串数码,仍叫染色体,有时也叫个体;适应能力是对应着一个染色体的一个数值来衡量;染色体的选择或淘汰则按所面对的问题是求最大还是最小来进行。
    神经网络算法
根据一个简化的统计,人脑由百亿条神经组成 — 每条神经平均连结到其它几千条神经。通过这种连结方式,神经可以收发不同数量的能量。神经的一个非常重要的功能是它们对能量的接受并不是立即作出响应,而是将它们累加起来,当这个累加的总和达到某个临界阈值时,它们将它们自己的那部分能量发送给其它的神经。大脑通过调节这些连结的数目和强度进行学习。尽管这是个生物行为的简化描述。但同样可以充分有力地被看作是神经网络的模型。

参考文献:
[1] 黄文奇 许如初. 《近世计算理论导引:NP难度问题的背景、前景及其求解算法研究》. 科学出版社.  2004.  87
[2] 陈志平 徐宗本. 《计算机数学:计算复杂性理论与NPC、NP难问题的求解》 科学出版社.  2001.  292

原创粉丝点击