二叉树

来源:互联网 发布:淘宝客cms选哪个好 编辑:程序博客网 时间:2024/06/14 16:00

定义1:满二叉树 (Full Binary Tree)
如果二叉树中所有分支结点的度数都为2,且叶子结点都在同一层次上,则称这类二叉树为满二叉树。


定义2:完全二叉树 (Complete Binary Tree)
如果一棵具有n个结点的高度为k的二叉树,它的每一个结点都与高度为k的满二叉树中编号为1—n的结点一一对应,则称这棵二叉树为完全二叉树。(从上到下从左到右编号)。


性质1:
在二叉树的第 i层最多有 2i-1个结点。(i ≥ 1) • 第一层最多有 21-1=1 个结点。 • 第二层最多有 22-1=2=2 个结点。 • 第三层最多有 23-1=4=4 个结点。

性质2:
深度为 k的二叉树最多有 2k-1个结点。(k ≥ 0) • 如果有一层,最多有 1=1=21-1=1 个结点。 • 如果有两层,最多有 1+2=22-1=3 个结点。 • 如果有三层,最多有 1+2+4=23-1=7 个结点。

性质3
对任何一棵二叉树,如果其叶结点有 n0个,度为2的非叶结点有 n2个,则有 n0=n2+1。 证明:假设二叉树中度1的结点有 n1个且总结点为 n个,则: n = n0 + n1 + n2 假设二叉树中连接父结点与子结点间的边为e条,则: e = n1 + 2n2 = n – 1 所以:n0=n2+1


头文件部分

#ifndef __BTREE_H__
#define __BTREE_H__


#define BLEFT  0    // 表示插入二叉树的左边
#define BRIGHT 1    // 表示插入二叉树的右边


#define TRUE   1
#define FALSE  0


typedef char BTreeData;
// 二叉树的结点
typedef struct _btreeNode
{
BTreeData data;
struct _btreeNode *lchild;   // 指向左孩子结点的指针
struct _btreeNode *rchild;   // 指向右孩子结点的指针
}BTreeNode;


// 二叉树
typedef struct _btree
{
BTreeNode *root;     // 指向二叉树的根节点
int  count;          // 记录二叉树结点的个数
}BTree;




typedef void (*Print_BTree)(BTreeNode*);


// 创建一棵二叉树
BTree *Create_BTree();


// pos 走的路径 值类似 110(左右右)  011 (右右左)
// count  代表走的步数
// flag   代表被替换的结点应该插入在新节点的位置,如果是BLEFT 表示插在左边,BRIGHT表示插在右边
int Btree_Insert(BTree *tree, BTreeData data, int pos, int count, int flag);


void Display (BTree* tree, Print_BTree pfunc);


int Delete (BTree *tree, int pos, int count);


int BTree_Height (BTree *);


int BTree_Degree (BTree *);


int BTree_Clear (BTree *);


int BTree_Destroy (BTree **);


// 前序遍历
void pre_order (BTreeNode *node);


void mid_order (BTreeNode *node);


void last_order (BTreeNode *node);

#endif

函数部分

#include "BTree.h"
#include <stdlib.h>
#include <stdio.h>


BTree *Create_BTree()
{
BTree *btree = (BTree*)malloc(sizeof(BTree)/sizeof(char));
if (btree == NULL)
return NULL;

btree->count = 0;
btree->root  = NULL;


return btree;
}




int Btree_Insert(BTree *tree, BTreeData data, int pos, int count, int flag)
{
if (tree == NULL || (flag != BLEFT && flag != BRIGHT))
return FALSE;

BTreeNode *node = (BTreeNode*)malloc(sizeof(BTreeNode)/sizeof(char));
if (node == NULL)
return FALSE;

node->data = data;
node->lchild = NULL;
node->rchild = NULL;


// 找插入的位置
BTreeNode *parent = NULL;
BTreeNode *current = tree->root; // current 一开始指向根节点,根节点的父节点是空
int way;   // 保存当前走的位置
while (count > 0 && current != NULL)
{
way = pos & 1;    // 取出当前走的方向
pos = pos >> 1;   // 移去走过的路线

// 因为当前位置就是走完以后的位置的父节点
parent = current;

if (way == BLEFT)   // 往左走
current = current->lchild;
else
current = current->rchild;

count--;
}

// 把被替换掉的结点插入到新节点下面
if (flag == BLEFT)
node->lchild = current;
else
node->rchild = current;

// 把新节点插入到二叉树中,way保存了应该插入在父节点的左边还是右边
if (parent != NULL)
{
if (way == BLEFT)
parent->lchild = node;
else
parent->rchild = node;
}
else
{
tree->root = node;  // 替换根节点
}



tree->count ++;

return TRUE;
}


void r_display(BTreeNode* node, Print_BTree pfunc,int gap)
{
int i;
if (node == NULL)
for (i = 0; i < gap; i++)
{
printf ("-");
return;
}

for (i = 0; i < gap; i++)
{
printf ("-");
}

// 打印结点
// printf ("%c\n", node->data);
pfunc (node);

if (node->lchild != NULL || node->rchild != NULL)
{
// 打印左孩子
r_display (node->lchild, pfunc, gap+4);

// 打印右孩子
r_display (node->rchild, pfunc, gap+4);
}
}


void Display (BTree* tree, Print_BTree pfunc)
{
if (tree == NULL)
return;

r_display(tree->root, pfunc, 0);
}


void r_delete (BTree *tree, BTreeNode* node)
{
if (node == NULL || tree == NULL)
return ;

// 先删除左孩子
r_delete (tree, node->lchild);

// 删除右孩子
r_delete (tree, node->rchild);

free (node);

tree->count --;
}


int Delete (BTree *tree, int pos, int count)
{
if (tree == NULL)
return FALSE;

// 找结点
BTreeNode* parent  = NULL;
BTreeNode* current = tree->root;
int way;
while (count > 0 && current != NULL)
{
way = pos & 1;
pos = pos >> 1;

parent = current;

if (way == BLEFT)
current = current->lchild;
else
current = current->rchild;

count --;
}

if (parent != NULL)
{
if (way == BLEFT)
parent->lchild = NULL;
else
parent->rchild = NULL;
}
else
{
tree->root = NULL;
}

// 释放结点
r_delete (tree, current);

return TRUE;
}


int r_height (BTreeNode *node)
{
if (node == NULL)
return 0;

int lh = r_height (node->lchild);
int rh = r_height (node->rchild);

return (lh > rh ? lh+1 : rh+1);
}


int BTree_Height (BTree *tree)
{
if (tree == NULL)
return FALSE;

int ret = r_height(tree->root);

return ret;
}


int r_degree (BTreeNode * node)
{
if (node == NULL)
return 0;

int degree = 0;
if (node->lchild != NULL)
degree++;
if (node->rchild != NULL)
degree++;

if (degree == 1)
{
int ld = r_degree (node->lchild);
if (ld == 2)
return 2;

int rd = r_degree (node->rchild);
if (rd == 2)
return 2;
}


return degree;
}


int BTree_Degree (BTree *tree)
{
if (tree == NULL)
return FALSE;

int ret = r_degree(tree->root);

return ret;
}


int BTree_Clear (BTree *tree)
{
if (tree == NULL)
return FALSE;

Delete (tree, 0, 0);  // 删除根节点

tree->root = NULL;

return TRUE;
}


int BTree_Destroy (BTree **tree)
{
if (tree == NULL)
return FALSE;

BTree_Clear(*tree);

free (*tree);
*tree = NULL;
return TRUE;
}




void pre_order (BTreeNode *node)
{
if (node == NULL)
return;

printf ("%4c", node->data);
pre_order (node->lchild);
pre_order (node->rchild);
}


void mid_order (BTreeNode *node)
{
if (node == NULL)
return;

mid_order (node->lchild);
printf ("%4c", node->data);
mid_order (node->rchild);
}




void last_order (BTreeNode *node)
{
if (node == NULL)
return;

last_order (node->lchild);
last_order (node->rchild);
printf ("%4c", node->data);
}





原创粉丝点击