二叉树

来源:互联网 发布:蜂蜜淘宝 编辑:程序博客网 时间:2024/06/05 04:17

@(数据结构)

[TOC]

树的定义

(递归)一棵树是一些节点的集合。这个集合可以是空集;若不是空集,则树由称作的节点 r 以及 0 个或多个非空的(子)树 $T_1,T_2,···,T_k$ 组成,这些子树中每一棵的根都被来自根 r 的一条有向所连结。

树的实现

//树节点的声明class TreeNode{    Object element;    TreeNode firstChild;    TreeNode netSibling;}

将每个节点的所有儿子都放到树节点的链表中。

树的遍历

  • 先序遍历
  • 后序遍历
  • 中序遍历

二叉树

二叉树(binary tree)是一棵树,其中每个节点都不能有多于两个的儿子。

二叉树平均深度为 $O(\sqrt{N})$,最大深度为 $N$。
二叉查找树的平均深度为 $O(log N)$。

//二叉树节点类class BinaryNode{    //Friendly data;accessible by other package toutines    Object element;//The data in the node    BinaryNode left;//Left child    BinaryNode right;//right child}

查找树ADT——二叉查找树

使二叉树成为查找树的性质是,对于树中的每个节点 X ,它的左子树中所有项的值小于 X 中的项,而它的右子树中所有项的值大于 X 中的项。

//BinaryNode类private static class BinaryNode<AnyType>{    //Constructors    BinaryNode(AnyType theElement)    {this(theElement, null, null);}    BinaryNode(AnyType theElement, BinaryNode<AnyType> lt, BinaryNode<AnyType> rt)    {element = theElement; left = lt; right = rt;}    AnyType element;//The data in the node    BinaryNode<AnyType> left;//Left child    BinaryNode<AnyType> right;//Right child}

二叉查找树架构

//二叉查找树架构public class BinarySearchTree<AnyType extends comparable<? super AnyType>>{    private static class BinaryNode<AnyType>    {        //Constructors        BinaryNode(AnyType theElement)        {this(theElement, null, null);}        BinaryNode(AnyType theElement, BinaryNode<AnyType> lt, BinaryNode<AnyType> rt)        {element = theElement; left = lt; right = rt;}        AnyType element;//The data in the node        BinaryNode<AnyType> left;//Left child        BinaryNode<AnyType> right;//Right child    }    private BinaryNode<AnyType> root;    public BinarySearchTree()    { root = null; }    public void makeEmpty()    { root = null; }    public boolean isEmpty()    { return root == null; }    public boolean contains( AnyType x )    { return contains( x, root ); }    public AnyType findMin()    {        if (isEmpty()) throw new UnderflowException();        return findMin(root).element;    }    public AnyType finMax()    {        if (isEmpty()) throw new UnderflowException();        return finMax(roow).element;    }    public void insert(AnyType x)    { root = insert(x,root); }    public void remove(AnyType x)    { root = remove(x,root); }     public void printTree()    {        if (isEmpty())            System.out.println("Empty tree");        else            printTree(root);    }    private boolean contains(AnyType x, BinaryNode<AnyType> t)    {        if (t == null)             return false;        int compareResult = x.compareTo(t.element);        if(compareResult < 0)            return contains(x, t.left);        else if(compareResult > 0)            return contains(x, t.right);        else            return true; //Match    }    private BinaryNode<AnyType> findMin(BinaryNode<AnyType> t)    {        if(t == null)            return null;        else if(t.left == null)            return t;        return findMin(t.left);    }    private BinaryNode<AnyType> finMax(BinaryNode<AnyType> t)    {        if(t != null)            while(t.right != null)                t = t.right;        return t;    }    private BinaryNode<AnyType> insert(AnyType x, BinaryNode<AnyType> t)    {        if(t == null)            return new BinaryNode<>(x, null, null);        int compareResult = x.compareTo(t.element);        if(compareResult < 0)            t.left = insert(x, t.left);        else if(compareResult > 0)            t.right = insert(x, t.right);        else            ;//Duplicate; do nothing        return t;    }    private BinaryNode<AnyType> remove(AnyType x, BinaryNode<AnyType> t)    {        if(t == null)            return t;//Item not found; do nothing        int compareResult = x.compareTo(t.element);        if(compareResult < 0)            t.left = remove(x, t.left);        else if(compareResult > 0)            t.right = remove(x, t.right);        else if(t.left != null && t.right != null)//Two children        {            t.element = findMin(t.right).element;            t.right = remove(t.element, t.right);        }        else            t = (t.left != null) ? t.left : t.right;        return t;    }    private void printTree(BinaryNode<AnyType> t)    {        if (t != null) {            printTree(t.left);            System.out.println(t.element);            printTree(t.right);        }    }}

contains方法

如果树 $T$ 中含有项 $X$ 的节点,那么这个操作需要返回true,如果这样的节点不存在则返回false。树的结构使这种操作很简单。如果 $T$ 是空集,那么久返回false。否则,如果存储在 $T$ 处的项是 $X$ ,那么可以返回true。否则,我们对数 $T$ 的左子树或右子树进行一次递归调用,则依赖于 $X$ 与存储在 $T$ 中的项的关系。

/** * Internal method to find an item in a subtree * @param  x is item to search for. * @param  t the node that roots the subtree. * @return true if the item is found; false otherwise. *///二叉查找树的contains操作private boolean contains(AnyType x, BinaryNode<AnyType> t)    {        if (t == null)             return false;        int compareResult = x.compareTo(t.element);        if(compareResult < 0)            return contains(x, t.left);        else if(compareResult > 0)            return contains(x, t.right);        else            return true; //Match    }
    //递归用while循环代替    while(compareResult <0)    {        t=t.left;        compareResult = x.compareTo(t.element);    }

算法表达式的简明性是以速度的降低为代价的。

findMin方法和findMax方法

这两个方法分别返回树中包含最小元和最大元的节点的引用。为执行findMin,从根开始并且只要有左儿子就向左进行。 终止点就是最小的元素。findMax除分支朝向右儿子其余过程相同。

//用递归编写findMin,用非递归编写findMax/*** Internal method to find the smallest item in a subtree* @param  t the node that roots the subtree.* @return node containing the smallest item*/private BinaryNode<AnyType> findMin(BinaryNode<AnyType> t){    if(t == null)        return null;    else if(t.left == null)        return t;    return findMin(t.left);}/*** Internal method to find the largest item in a subtree* @param  t the node that roots the subtree.* @return node containing the largest item.*/private BinaryNode<AnyType> finMax(BinaryNode<AnyType> t){    if(t != null)        while(t.right != null)            t = t.right;    return t;    }

insert方法

/** * Internal method to insert into a subtree * @param  x the item to insert * @param  t the node that roots the subtree * @return the new root of the subtree */ private BinaryNode<AnyType> insert(AnyType x, BinaryNode<AnyType> t){    if(t == null)        return new BinaryNode<>(x, null, null);    int compareResult = x.compareTo(t.element);    if(compareResult < 0)        t.left = insert(x, t.left);    else if(compareResult > 0)        t.right = insert(x, t.right);    else        ;//Duplicate; do nothing    return t;}

remove方法

    /**     * Internal method to remove from a subtree     * @param  x the item to remove.     * @param  t the node that roots the subtree.     * @return the new root of the subtree     */    private BinaryNode<AnyType> remove(AnyType x, BinaryNode<AnyType> t)    {        if(t == null)            return t;//Item not found; do nothing        int compareResult = x.compareTo(t.element);        if(compareResult < 0)            t.left = remove(x, t.left);        else if(compareResult > 0)            t.right = remove(x, t.right);        else if(t.left != null && t.right != null)//Node that has two children        {            t.element = findMin(t.right).element;//Find the minimum item of right subtree            t.right = remove(t.element, t.right);//Remove the node of minimum item recursively                    }        else            t = (t.left != null) ? t.left : t.right;//Node that has one children; parent of the node roots subtree of the node        return t;    }
  • 如果节点是树叶,可以直接删除。
  • 如果节点有一个儿子,这该节点需要在其父节点调整自己的链以绕过该节点
  • 如果节点有两个儿子,一般的删除策略是用其右子树的最小的数据代替该节点,并在右子树中递归地删除那个最小的节点

另外,如果删除的次数不多,通常使用的策略是懒惰删除(lazy deletion):当一个元素要被删除时,它仍留在树中,而只是被标记为删除。

AVL树

AVL树是带有平衡条件的二叉查找树。
这个平衡条件必须要容易保持,而且它保证树的深度须是 $O(log N)$ 。
一个AVL树是其每个节点的左子树和右子树的高度最多差 1 的二叉查找树(空树的高度定义为 -1)。

可以知道,在高度为 $h$ 的AVL树中,最少节点数 $S(h)=S(h-1)+S(h-2)+1$ 给出。
对于 $h=0, S(h)=1; h=1, S(h)=2$ 。
函数 $S(h)$ 与斐波那契数密切相关。

那么重点来了,对于AVL树的插入操作,有可能破坏树的平衡性。这时候,我们就需要在这一步插入完成之前恢复平衡的性质。

可以知道,从插入的节点往上,逆行到根,若发生平衡信息改变,那么改变的节点一定在这条路径上。我们需要找出这个需要重新平衡的节点 $\alpha$ 。

对于节点 $\alpha$ ,不平衡条件可能出现在一下四种操作中:

  1. 对 $\alpha$ 的左儿子的左子树进行一次插入(LL)。
  2. 对 $\alpha$ 的左儿子的右子树进行一次插入(LR)。
  3. 对 $\alpha$ 的右儿子的左子树进行一次插入(RL)。
  4. 对 $\alpha$ 的右儿子的右子树进行一次插入(RR)。

对于1和4,是插入发生在外边的情况,通过对树的一次单旋转而完成调整。对于2和3,是插入发生在内部的情况,通过对树的一次双旋转而完成调整。

这里先对AvlNode类进行定义:

private static class AvlNode<AnyType>{    //Constructors    AvlNode(AnyType theElement)    {this(theElement, null, null);}    AvlNode(AnyType theElement, AvlNode<AnyType> lt, AvlNode<AnyType> rt)    {element = theElement; left = lt; right = rt; height = 0;}    AnyType element;//The data in the code    AvlNode<AnyType> left;//Left child    AvlNode<AnyType> right;//Right child    int height;//Height}

然后需要一个返回节点高度的方法:

    //返回AVL树的节点高度    /**     * return the height of node t, or -1, if null.     */    private int height(AvlNode<AnyType> t)    {        return t == null ? -1 : t.height;    }

单旋转


LL单旋转
/** * Rotate binary tree node with left child. * For AVL trees, this is a single rotation for case 1. * Update heights, then return new root. */private AvlNode<AnyType> RotationWithLeftChild(AvlNode<AnyType> k2) {      AVLTreeNode<AnyType> k1 = k2.left;      k2.left = k1.right;      k1.right = k2;      k2.height = Math.max( height(k2.left), height(k2.right)) + 1;      k1.height = Math.max( height(k1.left), k2.height) + 1;      return k1;  }

RR单旋转
/** * Rotate binary tree node with right child. * For AVL trees, this is a single rotation for case 4. * Update heights, then return new root. */private AvlNode<AnyType> RotationWithRightChild(AvlNode<AnyType> k1) {      AVLTreeNode<AnyType> k2 = k1.right;        k1.right = k2.left;         k2.left = k1;         k1.height = Math.max( height(k1.left), height(k1.right)) + 1;      k1.height = Math.max( height(k2.right), k1.height) + 1;      return k2;  }

双旋转


LR双旋转
    /**     * Double rotate binary tree node: first left child     * with its right child; then node k3 with new left child.     * For AVL trees, this is a double rotation for case 2.     * Update heights, then return new root.     */    private AvlNode<AnyType> doubleWithLeftChild(AvlNode<AnyType> k3)    {        k3.left = RotationWithRightChild(k3.left);        return RotationWithLeftChild(k3);    }

RL双旋转
    /**     * Double rotate binary tree node: first right child     * with its left child; then node k1 with new right child.     * For AVL trees, this is a double rotation for case 3.     * Update heights, then return new root.     */    private AvlNode<AnyType> doubleWithRightChild(AvlNode<AnyType> k1)    {        k1.right = RotationWithRightChild(k1.right);        return RotationWithLeftChild(k1);    }

AVL树的插入方法

插入方法就是前文中的insert方法,只是在最后一行调用平衡的方法以保持AVL树的平衡性。
```java
/**

 * Internal method to insert into a subtree. * @param  x the item to insert. * @param  t the node that roots the subtree. * @return the new root of the subtree. */private AvlNode<AnyType> insert(AnyType x, AvlNode<AnyType> t){    if(t == null)        return new    AvlNode<>(x, null, null);
    int compareResult = x.compareTo(t.element);    if(compareResult < 0)        t.left = insert(x, t.left);    else if(compareResult > 0)        t.right = insert(x, t.right);    else        ;//Duplicate; do nothing    return balance(t);}private static final int ALLOWED_IMBALLANCE = 1;//Assume t is either balanced of within one of being balancedprivate AvlNode<AnyType> balance(AvlNode<AnyType> t){    if(t == null)        return t;    if(height(t.left) - height(t.right) > ALLOWED_IMBALLANCE)        if(height(t.left.left) >= height(t.left.right))            t = RotationWithLeftChild(t);        else            t = doubleWithLeftChild(t);    else    if(height(t.right) - height(t.left) > ALLOWED_IMBALLANCE)        if(height(t.right.right) >= height(t.right.left))            t = RotationWithRightChild(t);        else            t = doubleWithRightChild(t);    t.height = Math.max(height(t.left), height(t.right)) + 1;    return t;}
###AVL树的删除方法> 和AVL树的插入一样,只用在前文的删除方法最后加上一行调用平衡的方法即可。
private AvlNode<AnyType> remove(AnyType x, AvlNode<AnyType> t){    if(t == null)        return t;//Item not found; do nothing    int compareResult = x.compareTo(t.element);    if(compareResult < 0)        t.left = remove(x, t.left);    else if(compareResult > 0)        t.right = remove(x, t.right);    else if(t.left != null && t.right != null)//Node that has two children    {        t.element = findMin(t.right).element;//Find the minimum item of right subtree        t.right = remove(t.element, t.right);//Remove the node of minimum item recursively                }    else        t = (t.left != null) ? t.left : t.right;//Node that has one children; parent of the node roots subtree of the node    return balance(t);}

```