caffe学习笔记-模型代码生成.prototxt文件

来源:互联网 发布:云计算 视界云 知乎 编辑:程序博客网 时间:2024/05/22 00:10

pycaffe网络定义

以ImageData格式输入,定义输入层:

data, label = L.ImageData(source=img_list, batch_size=batch_size, ntop=2,root_folder=root,    transform_param=dict(scale= 0.00390625))

定义卷积层:

conv1=L.Convolution(data, kernel_size=5, stride=1,num_output=20, pad=0,weight_filler=dict(type='xavier'))

定义池化层:

pool1=L.Pooling(conv1, pool=P.Pooling.MAX, kernel_size=2, stride=2)

定义激活函数层:

relu3=L.ReLU(fc3, in_place=True)

定义全连接层:

fc3=L.InnerProduct(pool2, num_output=500,weight_filler=dict(type='xavier'))

计算损失函数:

loss = L.SoftmaxWithLoss(fc4, label)

计算精度:

acc = L.Accuracy(fc4, label)

保存网络定义.prototxt文件

以Lenet为例,网络结构代码如下:

def Lenet(img_list,batch_size,include_acc=False):    #第一层,数据输入层,以ImageData格式输入    data, label = L.ImageData(source=img_list, batch_size=batch_size, ntop=2,root_folder=root,        transform_param=dict(scale= 0.00390625))    #第二层:卷积层    conv1=L.Convolution(data, kernel_size=5, stride=1,num_output=20, pad=0,weight_filler=dict(type='xavier'))    #池化层    pool1=L.Pooling(conv1, pool=P.Pooling.MAX, kernel_size=2, stride=2)    #卷积层    conv2=L.Convolution(pool1, kernel_size=5, stride=1,num_output=50, pad=0,weight_filler=dict(type='xavier'))    #池化层    pool2=L.Pooling(conv2, pool=P.Pooling.MAX, kernel_size=2, stride=2)    #全连接层    fc3=L.InnerProduct(pool2, num_output=500,weight_filler=dict(type='xavier'))    #激活函数层    relu3=L.ReLU(fc3, in_place=True)    #全连接层    fc4 = L.InnerProduct(relu3, num_output=10,weight_filler=dict(type='xavier'))    #softmax层    loss = L.SoftmaxWithLoss(fc4, label)    if include_acc:             # test阶段需要有accuracy层        acc = L.Accuracy(fc4, label)        return to_proto(loss, acc)    else:        return to_proto(loss)

上述代码中,通过to_proto()函数,保存网络定义,保存为.prototxt文件,

with open(train_proto, 'w') as f:    f.write(str(Lenet(train_list,batch_size=64)))

train_list为模型输入,train_proto为.prototxt文件名,保存的.prototxt文件内容如下:

layer {  name: "ImageData1"  type: "ImageData"  top: "ImageData1"  top: "ImageData2"  transform_param {    scale: 0.00390625  }  image_data_param {    source: "mnist/train/train.txt"    batch_size: 64    root_folder: ""  }}layer {  name: "Convolution1"  type: "Convolution"  bottom: "ImageData1"  top: "Convolution1"  convolution_param {    num_output: 20    pad: 0    kernel_size: 5    stride: 1    weight_filler {      type: "xavier"    }  }}layer {  name: "Pooling1"  type: "Pooling"  bottom: "Convolution1"  top: "Pooling1"  pooling_param {    pool: MAX    kernel_size: 2    stride: 2  }}layer {  name: "Convolution2"  type: "Convolution"  bottom: "Pooling1"  top: "Convolution2"  convolution_param {    num_output: 50    pad: 0    kernel_size: 5    stride: 1    weight_filler {      type: "xavier"    }  }}layer {  name: "Pooling2"  type: "Pooling"  bottom: "Convolution2"  top: "Pooling2"  pooling_param {    pool: MAX    kernel_size: 2    stride: 2  }}layer {  name: "InnerProduct1"  type: "InnerProduct"  bottom: "Pooling2"  top: "InnerProduct1"  inner_product_param {    num_output: 500    weight_filler {      type: "xavier"    }  }}layer {  name: "ReLU1"  type: "ReLU"  bottom: "InnerProduct1"  top: "InnerProduct1"}layer {  name: "InnerProduct2"  type: "InnerProduct"  bottom: "InnerProduct1"  top: "InnerProduct2"  inner_product_param {    num_output: 10    weight_filler {      type: "xavier"    }  }}layer {  name: "SoftmaxWithLoss1"  type: "SoftmaxWithLoss"  bottom: "InnerProduct2"  bottom: "ImageData2"  top: "SoftmaxWithLoss1"}

由输入层可知,训练数据为mnist/train/train.txt.

网络训练

caffe训练,还需要一个solver.prototxt文件,用于定义训练的迭代次数,学习率等参数,可以手动编写该文件,也可以通过代码生成,

#编写一个函数,生成参数文件def gen_solver(solver_file,train_net,test_net):    s=proto.caffe_pb2.SolverParameter()    s.train_net =train_net    s.test_net.append(test_net)    s.test_interval = 938    #60000/64,测试间隔参数:训练完一次所有的图片,进行一次测试      s.test_iter.append(100)  #10000/100 测试迭代次数,需要迭代100次,才完成一次所有数据的测试    s.max_iter = 9380       #10 epochs , 938*10,最大训练次数    s.base_lr = 0.01    #基础学习率    s.momentum = 0.9    #动量    s.weight_decay = 5e-4  #权值衰减项    s.lr_policy = 'step'   #学习率变化规则    s.stepsize=3000         #学习率变化频率    s.gamma = 0.1          #学习率变化指数    s.display = 20         #屏幕显示间隔    s.snapshot = 938       #保存caffemodel的间隔    s.snapshot_prefix =root+'mnist/lenet'   #caffemodel前缀    s.type ='SGD'         #优化算法    s.solver_mode = proto.caffe_pb2.SolverParameter.GPU    #加速    #写入solver.prototxt    with open(solver_file, 'w') as f:        f.write(str(s))

生成solver_proto文件内容如下:

train_net: "mnist/train.prototxt"test_net: "mnist/test.prototxt"test_iter: 100test_interval: 938base_lr: 0.00999999977648display: 20max_iter: 9380lr_policy: "step"gamma: 0.10000000149momentum: 0.899999976158weight_decay: 0.000500000023749stepsize: 3000snapshot: 938snapshot_prefix: "mnist/lenet"solver_mode: GPUtype: "SGD"

训练代码编写:

caffe.set_device(0)caffe.set_mode_gpu()solver = caffe.SGDSolver(solver_proto)solver.solve()

完整代码如下:

#! /usr/bin/env python2.7#coding=utf-8import syscaffe_root='/home/program/caffe/'sys.path.insert(0, caffe_root + '/python')import caffefrom caffe import layers as L,params as P,proto,to_proto#设定文件的保存路径root=''                           #根目录train_list=root+'mnist/train/train.txt'     #训练图片列表test_list=root+'mnist/test/test.txt'        #测试图片列表train_proto=root+'mnist/train.prototxt'     #训练配置文件test_proto=root+'mnist/test.prototxt'       #测试配置文件solver_proto=root+'mnist/solver.prototxt'   #参数文件#编写一个函数,生成配置文件prototxtdef Lenet(img_list,batch_size,include_acc=False):    #第一层,数据输入层,以ImageData格式输入    data, label = L.ImageData(source=img_list, batch_size=batch_size, ntop=2,root_folder=root,        transform_param=dict(scale= 0.00390625))    #第二层:卷积层    conv1=L.Convolution(data, kernel_size=5, stride=1,num_output=20, pad=0,weight_filler=dict(type='xavier'))    #池化层    pool1=L.Pooling(conv1, pool=P.Pooling.MAX, kernel_size=2, stride=2)    #卷积层    conv2=L.Convolution(pool1, kernel_size=5, stride=1,num_output=50, pad=0,weight_filler=dict(type='xavier'))    #池化层    pool2=L.Pooling(conv2, pool=P.Pooling.MAX, kernel_size=2, stride=2)    #全连接层    fc3=L.InnerProduct(pool2, num_output=500,weight_filler=dict(type='xavier'))    #激活函数层    relu3=L.ReLU(fc3, in_place=True)    #全连接层    fc4 = L.InnerProduct(relu3, num_output=10,weight_filler=dict(type='xavier'))    #softmax层    loss = L.SoftmaxWithLoss(fc4, label)    if include_acc:             # test阶段需要有accuracy层        acc = L.Accuracy(fc4, label)        return to_proto(loss, acc)    else:        return to_proto(loss)def write_net():    #写入train.prototxt    with open(train_proto, 'w') as f:        f.write(str(Lenet(train_list,batch_size=64)))    #写入test.prototxt        with open(test_proto, 'w') as f:        f.write(str(Lenet(test_list,batch_size=100, include_acc=True)))#编写一个函数,生成参数文件def gen_solver(solver_file,train_net,test_net):    s=proto.caffe_pb2.SolverParameter()    s.train_net =train_net    s.test_net.append(test_net)    s.test_interval = 938    #60000/64,测试间隔参数:训练完一次所有的图片,进行一次测试      s.test_iter.append(100)  #10000/100 测试迭代次数,需要迭代100次,才完成一次所有数据的测试    s.max_iter = 9380       #10 epochs , 938*10,最大训练次数    s.base_lr = 0.01    #基础学习率    s.momentum = 0.9    #动量    s.weight_decay = 5e-4  #权值衰减项    s.lr_policy = 'step'   #学习率变化规则    s.stepsize=3000         #学习率变化频率    s.gamma = 0.1          #学习率变化指数    s.display = 20         #屏幕显示间隔    s.snapshot = 938       #保存caffemodel的间隔    s.snapshot_prefix =root+'mnist/lenet'   #caffemodel前缀    s.type ='SGD'         #优化算法    s.solver_mode = proto.caffe_pb2.SolverParameter.GPU    #加速    #写入solver.prototxt    with open(solver_file, 'w') as f:        f.write(str(s))#开始训练def training(solver_proto):    caffe.set_device(0)    caffe.set_mode_gpu()    solver = caffe.SGDSolver(solver_proto)    solver.solve()if __name__ == '__main__':    write_net()    gen_solver(solver_proto,train_proto,test_proto)     training(solver_proto)

代码参考自:http://www.cnblogs.com/denny402/p/5684431.html

阅读全文
0 0
原创粉丝点击