双边滤波原理理解

来源:互联网 发布:知乎rss订阅地址 编辑:程序博客网 时间:2024/06/08 11:55

bilateral filter

双边滤波是一种保边缘滤波,输出像素值由邻域像素的加权组合得到,公式如下:
这里写图片描述

当前像素点p的值,由邻域N(p)中的所有像素点qN(p)加权求和得到,权重系数为Wpq,

Wpq=Gσs(||pq||)Gσr(||IpIq||

Gσ为高斯函数,均值为0,标准差为σ.Gσs,Gσr分别为定义域核,值域核,:

Gσs(||pq||)=exp((pxqx)2+(pyqy)22σ2s)

px,py,qx,qy表示像素点p,q在图像中的位置坐标点,Gσs表示当前的滤波输出值与像素点的位置距离有关,离p点越近的点,对p的滤波输出影响越大.

Gσr(||pq||)=exp((IpIq)22σ2r)

Ip,Iq表示像素点p,q的亮度值,表示亮度值越大的像素点对p的滤波输出影响越大.

之所有能够起到保边缘的效果,是因为在权重中引入了值域核Gσr.在边缘处,相似点p,q的亮度值相差较大,因此此时的Gσr在边缘处的跳变也很大,所以输出值在边缘处也有明显的跳变,为了更好说明,引用http://blog.csdn.net/jfuck/article/details/8932978的示意图如下:

img

由图像可知,原始图像在边缘处,亮度值存在明显的跳变,从而使得值域核Gσr也在边缘处存在明显跳变,从而使得滤波输出能够保留边缘信息.

Bilateral Grid

bilateral grid算法matlab代码如下:

function output = bilateralFilter( data, edge, sigmaSpatial, sigmaRange, ...    samplingSpatial, samplingRange )if ~exist( 'edge', 'var' ),    edge = data;endinputHeight = size( data, 1 );inputWidth = size( data, 2 );if ~exist( 'sigmaSpatial', 'var' ),    sigmaSpatial = min( inputWidth, inputHeight ) / 16;endedgeMin = min( edge( : ) );edgeMax = max( edge( : ) );edgeDelta = edgeMax - edgeMin;if ~exist( 'sigmaRange', 'var' ),    sigmaRange = 0.1 * edgeDelta;endif ~exist( 'samplingSpatial', 'var' ),    samplingSpatial = sigmaSpatial;endif ~exist( 'samplingRange', 'var' ),    samplingRange = sigmaRange;endif size( data ) ~= size( edge ),    error( 'data and edge must be of the same size' );end% parametersderivedSigmaSpatial = sigmaSpatial / samplingSpatial;derivedSigmaRange = sigmaRange / samplingRange;paddingXY = floor( 2 * derivedSigmaSpatial ) + 1;paddingZ = floor( 2 * derivedSigmaRange ) + 1;% allocate 3D griddownsampledWidth = floor( ( inputWidth - 1 ) / samplingSpatial ) + 1 + 2 * paddingXY;downsampledHeight = floor( ( inputHeight - 1 ) / samplingSpatial ) + 1 + 2 * paddingXY;downsampledDepth = floor( edgeDelta / samplingRange ) + 1 + 2 * paddingZ;gridData = zeros( downsampledHeight, downsampledWidth, downsampledDepth );gridWeights = zeros( downsampledHeight, downsampledWidth, downsampledDepth );% compute downsampled indices[ jj, ii ] = meshgrid( 0 : inputWidth - 1, 0 : inputHeight - 1 );% ii =% 0 0 0 0 0% 1 1 1 1 1% 2 2 2 2 2% jj =% 0 1 2 3 4% 0 1 2 3 4% 0 1 2 3 4% so when iterating over ii( k ), jj( k )% get: ( 0, 0 ), ( 1, 0 ), ( 2, 0 ), ... (down columns first)di = round( ii / samplingSpatial ) + paddingXY + 1;dj = round( jj / samplingSpatial ) + paddingXY + 1;dz = round( ( edge - edgeMin ) / samplingRange ) + paddingZ + 1;% perform scatter (there's probably a faster way than this)% normally would do downsampledWeights( di, dj, dk ) = 1, but we have to% perform a summation to do box downsamplingfor k = 1 : numel( dz ),    dataZ = data( k ); % traverses the image column wise, same as di( k )    if ~isnan( dataZ  ),        dik = di( k );        djk = dj( k );        dzk = dz( k );        gridData( dik, djk, dzk ) = gridData( dik, djk, dzk ) + dataZ;        gridWeights( dik, djk, dzk ) = gridWeights( dik, djk, dzk ) + 1;    endend% make gaussian kernelkernelWidth = 2 * derivedSigmaSpatial + 1;kernelHeight = kernelWidth;kernelDepth = 2 * derivedSigmaRange + 1;halfKernelWidth = floor( kernelWidth / 2 );halfKernelHeight = floor( kernelHeight / 2 );halfKernelDepth = floor( kernelDepth / 2 );[gridX, gridY, gridZ] = meshgrid( 0 : kernelWidth - 1, 0 : kernelHeight - 1, 0 : kernelDepth - 1 );gridX = gridX - halfKernelWidth;gridY = gridY - halfKernelHeight;gridZ = gridZ - halfKernelDepth;gridRSquared = ( gridX .* gridX + gridY .* gridY ) / ( derivedSigmaSpatial * derivedSigmaSpatial ) + ( gridZ .* gridZ ) / ( derivedSigmaRange * derivedSigmaRange );kernel = exp( -0.5 * gridRSquared );% convolveblurredGridData = convn( gridData, kernel, 'same' );blurredGridWeights = convn( gridWeights, kernel, 'same' );% divideblurredGridWeights( blurredGridWeights == 0 ) = -2; % avoid divide by 0, won't read there anywaynormalizedBlurredGrid = blurredGridData ./ blurredGridWeights;normalizedBlurredGrid( blurredGridWeights < -1 ) = 0; % put 0s where it's undefinedblurredGridWeights( blurredGridWeights < -1 ) = 0; % put zeros back% upsample[ jj, ii ] = meshgrid( 0 : inputWidth - 1, 0 : inputHeight - 1 ); % meshgrid does x, then y, so output arguments need to be reversed% no roundingdi = ( ii / samplingSpatial ) + paddingXY + 1;dj = ( jj / samplingSpatial ) + paddingXY + 1;dz = ( edge - edgeMin ) / samplingRange + paddingZ + 1;% interpn takes rows, then cols, etc% i.e. size(v,1), then size(v,2), ...output = interpn( normalizedBlurredGrid, di, dj, dz );