用作者提供的net1->net2生成MTCNN的训练样本(positive,negative,part,landmark)

来源:互联网 发布:淘宝上卖符咒 编辑:程序博客网 时间:2024/06/05 10:40

本代码基于作者提供的python版本代码修改,参考:

https://github.com/DuinoDu/mtcnn/blob/master/demo.py  (作者提供)

https://github.com/dlunion/mtcnn/blob/master/train/gen_48net_data2.py


1,生成positive,negative,part三种样本,用作者的net1->net2生成bbox, 根据预测的bbox和ground truth计算IOU:

positive: IOU >= 0.65;

negative: IOU < 0.3;

part: 0.4 <= IOU < 0.65


代码如下:


#!/usr/bin/env python# -*- coding: utf-8 -*-import _init_pathsimport caffeimport cv2import numpy as np#from python_wrapper import *import osdef bbreg(boundingbox, reg):    reg = reg.T         # calibrate bouding boxes    if reg.shape[1] == 1:        print "reshape of reg"        pass # reshape of reg    w = boundingbox[:,2] - boundingbox[:,0] + 1    h = boundingbox[:,3] - boundingbox[:,1] + 1    bb0 = boundingbox[:,0] + reg[:,0]*w    bb1 = boundingbox[:,1] + reg[:,1]*h    bb2 = boundingbox[:,2] + reg[:,2]*w    bb3 = boundingbox[:,3] + reg[:,3]*h        boundingbox[:,0:4] = np.array([bb0, bb1, bb2, bb3]).T    #print "bb", boundingbox    return boundingboxdef pad(boxesA, w, h):    boxes = boxesA.copy() # shit, value parameter!!!    tmph = boxes[:,3] - boxes[:,1] + 1    tmpw = boxes[:,2] - boxes[:,0] + 1    numbox = boxes.shape[0]    dx = np.ones(numbox)    dy = np.ones(numbox)    edx = tmpw     edy = tmph    x = boxes[:,0:1][:,0]    y = boxes[:,1:2][:,0]    ex = boxes[:,2:3][:,0]    ey = boxes[:,3:4][:,0]          tmp = np.where(ex > w)[0]    if tmp.shape[0] != 0:        edx[tmp] = -ex[tmp] + w-1 + tmpw[tmp]        ex[tmp] = w-1    tmp = np.where(ey > h)[0]    if tmp.shape[0] != 0:        edy[tmp] = -ey[tmp] + h-1 + tmph[tmp]        ey[tmp] = h-1    tmp = np.where(x < 1)[0]    if tmp.shape[0] != 0:        dx[tmp] = 2 - x[tmp]        x[tmp] = np.ones_like(x[tmp])    tmp = np.where(y < 1)[0]    if tmp.shape[0] != 0:        dy[tmp] = 2 - y[tmp]        y[tmp] = np.ones_like(y[tmp])        # for python index from 0, while matlab from 1    dy = np.maximum(0, dy-1)    dx = np.maximum(0, dx-1)    y = np.maximum(0, y-1)    x = np.maximum(0, x-1)    edy = np.maximum(0, edy-1)    edx = np.maximum(0, edx-1)    ey = np.maximum(0, ey-1)    ex = np.maximum(0, ex-1)    return [dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph]def IoU(box, boxes):    """Compute IoU between detect box and gt boxes    Parameters:    ----------    box: numpy array , shape (5, ): x1, y1, x2, y2, score        input box    boxes: numpy array, shape (n, 4): x1, y1, x2, y2        input ground truth boxes    Returns:    -------    ovr: numpy.array, shape (n, )        IoU    """    box_area = (box[2] - box[0] + 1) * (box[3] - box[1] + 1)    area = (boxes[:, 2] - boxes[:, 0] + 1) * (boxes[:, 3] - boxes[:, 1] + 1)    xx1 = np.maximum(box[0], boxes[:, 0])    yy1 = np.maximum(box[1], boxes[:, 1])    xx2 = np.minimum(box[2], boxes[:, 2])    yy2 = np.minimum(box[3], boxes[:, 3])    # compute the width and height of the bounding box    w = np.maximum(0, xx2 - xx1 + 1)    h = np.maximum(0, yy2 - yy1 + 1)    inter = w * h    ovr = inter / (box_area + area - inter)    return ovrdef rerec(bboxA):    # convert bboxA to square    w = bboxA[:,2] - bboxA[:,0]    h = bboxA[:,3] - bboxA[:,1]    l = np.maximum(w,h).T    bboxA[:,0] = bboxA[:,0] + w*0.5 - l*0.5    bboxA[:,1] = bboxA[:,1] + h*0.5 - l*0.5     bboxA[:,2:4] = bboxA[:,0:2] + np.repeat([l], 2, axis = 0).T     return bboxAdef nms(boxes, threshold, type):    """nms    :boxes: [:,0:5]    :threshold: 0.5 like    :type: 'Min' or others    :returns: TODO    """    if boxes.shape[0] == 0:        return np.array([])    x1 = boxes[:,0]    y1 = boxes[:,1]    x2 = boxes[:,2]    y2 = boxes[:,3]    s = boxes[:,4]    area = np.multiply(x2-x1+1, y2-y1+1)    I = np.array(s.argsort()) # read s using I        pick = [];    while len(I) > 0:        xx1 = np.maximum(x1[I[-1]], x1[I[0:-1]])        yy1 = np.maximum(y1[I[-1]], y1[I[0:-1]])        xx2 = np.minimum(x2[I[-1]], x2[I[0:-1]])        yy2 = np.minimum(y2[I[-1]], y2[I[0:-1]])        w = np.maximum(0.0, xx2 - xx1 + 1)        h = np.maximum(0.0, yy2 - yy1 + 1)        inter = w * h        if type == 'Min':            o = inter / np.minimum(area[I[-1]], area[I[0:-1]])        else:            o = inter / (area[I[-1]] + area[I[0:-1]] - inter)        pick.append(I[-1])        I = I[np.where( o <= threshold)[0]]    return pickdef generateBoundingBox(map, reg, scale, t):    stride = 2    cellsize = 12    map = map.T    dx1 = reg[0,:,:].T    dy1 = reg[1,:,:].T    dx2 = reg[2,:,:].T    dy2 = reg[3,:,:].T    (x, y) = np.where(map >= t)    yy = y    xx = x    score = map[x,y]    reg = np.array([dx1[x,y], dy1[x,y], dx2[x,y], dy2[x,y]])    if reg.shape[0] == 0:        pass    boundingbox = np.array([yy, xx]).T    bb1 = np.fix((stride * (boundingbox) + 1) / scale).T # matlab index from 1, so with "boundingbox-1"    bb2 = np.fix((stride * (boundingbox) + cellsize - 1 + 1) / scale).T # while python don't have to    score = np.array([score])    boundingbox_out = np.concatenate((bb1, bb2, score, reg), axis=0)    return boundingbox_out.Tdef drawBoxes(im, boxes):    x1 = boxes[:,0]    y1 = boxes[:,1]    x2 = boxes[:,2]    y2 = boxes[:,3]    for i in range(x1.shape[0]):        cv2.rectangle(im, (int(x1[i]), int(y1[i])), (int(x2[i]), int(y2[i])), (0,255,0), 1)    return imdef drawlandmark(im, points):    for i in range(points.shape[0]):        for j in range(5):            cv2.circle(im, (int(points[i][j]), int(points[i][j+5])), 2, (255,0,0))    return imfrom time import time_tstart_stack = []def tic():    _tstart_stack.append(time())def toc(fmt="Elapsed: %s s"):    print fmt % (time()-_tstart_stack.pop())def detect_face(img, minsize, PNet, RNet, threshold, fastresize, factor):        img2 = img.copy()    factor_count = 0    total_boxes = np.zeros((0,9), np.float)    points = []    h = img.shape[0]    w = img.shape[1]    minl = min(h, w)    img = img.astype(float)    m = 12.0/minsize    minl = minl*m        # create scale pyramid    scales = []    while minl >= 12:        scales.append(m * pow(factor, factor_count))        minl *= factor        factor_count += 1        # first stage    for scale in scales:        hs = int(np.ceil(h*scale))        ws = int(np.ceil(w*scale))        if fastresize:            im_data = (img-127.5)*0.0078125 # [0,255] -> [-1,1]            im_data = cv2.resize(im_data, (ws,hs)) # default is bilinear        else:             im_data = cv2.resize(img, (ws,hs)) # default is bilinear            im_data = (im_data-127.5)*0.0078125 # [0,255] -> [-1,1]        #im_data = imResample(img, hs, ws); print "scale:", scale        im_data = np.swapaxes(im_data, 0, 2)        im_data = np.array([im_data], dtype = np.float)        PNet.blobs['data'].reshape(1, 3, ws, hs)        PNet.blobs['data'].data[...] = im_data        out = PNet.forward()            boxes = generateBoundingBox(out['prob1'][0,1,:,:], out['conv4-2'][0], scale, threshold[0])        if boxes.shape[0] != 0:            pick = nms(boxes, 0.5, 'Union')            if len(pick) > 0 :                boxes = boxes[pick, :]        if boxes.shape[0] != 0:            total_boxes = np.concatenate((total_boxes, boxes), axis=0)             #np.save('total_boxes_101.npy', total_boxes)    #####    # 1 #    #####    # print "[1]:",total_boxes.shape[0]    #print total_boxes    #return total_boxes, []     numbox = total_boxes.shape[0]    if numbox > 0:        # nms        pick = nms(total_boxes, 0.7, 'Union')        total_boxes = total_boxes[pick, :]        # print "[2]:",total_boxes.shape[0]                # revise and convert to square        regh = total_boxes[:,3] - total_boxes[:,1]        regw = total_boxes[:,2] - total_boxes[:,0]        t1 = total_boxes[:,0] + total_boxes[:,5]*regw        t2 = total_boxes[:,1] + total_boxes[:,6]*regh        t3 = total_boxes[:,2] + total_boxes[:,7]*regw        t4 = total_boxes[:,3] + total_boxes[:,8]*regh        t5 = total_boxes[:,4]        total_boxes = np.array([t1,t2,t3,t4,t5]).T        total_boxes = rerec(total_boxes) # convert box to square        # print "[4]:",total_boxes.shape[0]                total_boxes[:,0:4] = np.fix(total_boxes[:,0:4])        # print "[4.5]:",total_boxes.shape[0]        #print total_boxes        [dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = pad(total_boxes, w, h)    numbox = total_boxes.shape[0]    if numbox > 0:        # second stage        # construct input for RNet        tempimg = np.zeros((numbox, 24, 24, 3)) # (24, 24, 3, numbox)        for k in range(numbox):            tmp = np.zeros((int(tmph[k]) +1, int(tmpw[k]) + 1,3))            tmp[int(dy[k]):int(edy[k])+1, int(dx[k]):int(edx[k])+1] = img[int(y[k]):int(ey[k])+1, int(x[k]):int(ex[k])+1]            #print "y,ey,x,ex", y[k], ey[k], x[k], ex[k]            #print "tmp", tmp.shape                        tempimg[k,:,:,:] = cv2.resize(tmp, (24, 24))        #print tempimg.shape        #print tempimg[0,0,0,:]        tempimg = (tempimg-127.5)*0.0078125 # done in imResample function wrapped by python        # RNet        tempimg = np.swapaxes(tempimg, 1, 3)        #print tempimg[0,:,0,0]                RNet.blobs['data'].reshape(numbox, 3, 24, 24)        RNet.blobs['data'].data[...] = tempimg        out = RNet.forward()        score = out['prob1'][:,1]        #print 'score', score        pass_t = np.where(score>threshold[1])[0]        #print 'pass_t', pass_t                score =  np.array([score[pass_t]]).T        total_boxes = np.concatenate( (total_boxes[pass_t, 0:4], score), axis = 1)        # print "[5]:",total_boxes.shape[0]        #print total_boxes        #print "1.5:",total_boxes.shape                mv = out['conv5-2'][pass_t, :].T        #print "mv", mv        if total_boxes.shape[0] > 0:            pick = nms(total_boxes, 0.7, 'Union')            # print 'pick', pick            if len(pick) > 0:                total_boxes = total_boxes[pick, :]                # print "[6]:", total_boxes.shape[0]                total_boxes = bbreg(total_boxes, mv[:, pick])                # print "[7]:", total_boxes.shape[0]                total_boxes = rerec(total_boxes)                # print "[8]:", total_boxes.shape[0]    return total_boxesdef main():    img_dir = "/home/xiao/code/mtcnn-caffe/prepare_data/WIDER_train/images/"    imglistfile = "wider_face_train.txt"    with open(imglistfile, 'r') as f:        annotations = f.readlines()    num = len(annotations)    print "%d pics in total" % num    neg_save_dir = "/media/xiao/软件/mtcnn/train/48/negative/"    pos_save_dir = "/media/xiao/软件/mtcnn/train/48/positive/"    part_save_dir = "/media/xiao/软件/mtcnn/train/48/part/"    image_size = 48    f1 = open('/media/xiao/软件/mtcnn/train/48/pos_48.txt', 'w')    f2 = open('/media/xiao/软件/mtcnn/train/48/neg_48.txt', 'w')    f3 = open('/media/xiao/软件/mtcnn/train/48/part_48.txt', 'w')    p_idx = 0  # positive    n_idx = 0  # negative    d_idx = 0  # dont care    image_idx = 0    minsize = 20    caffe_model_path = "./model"    threshold = [0.6, 0.7, 0.7]    factor = 0.709        caffe.set_mode_gpu()    PNet = caffe.Net(caffe_model_path+"/det1.prototxt", caffe_model_path+"/det1.caffemodel", caffe.TEST)    RNet = caffe.Net(caffe_model_path+"/det2.prototxt", caffe_model_path+"/det2.caffemodel", caffe.TEST)    for annotation in annotations:        # imgpath = imgpath.split('\n')[0]        annotation = annotation.strip().split(' ')        bbox = map(float, annotation[1:])        gts = np.array(bbox, dtype=np.float32).reshape(-1, 4)        img_path = img_dir + annotation[0] + '.jpg'        #print "######\n", img_path        print image_idx        image_idx += 1        img = cv2.imread(img_path)        img_matlab = img.copy()        tmp = img_matlab[:,:,2].copy()        img_matlab[:,:,2] = img_matlab[:,:,0]        img_matlab[:,:,0] = tmp        boundingboxes = detect_face(img_matlab, minsize, PNet, RNet, threshold, False, factor)        #img = drawBoxes(img, boundingboxes)        #cv2.imshow('img', img)        #cv2.waitKey(1000)        # generate positive,negative,part samples        for box in boundingboxes:            x_left, y_top, x_right, y_bottom, _ = box            crop_w = x_right - x_left + 1            crop_h = y_bottom - y_top + 1            # ignore box that is too small or beyond image border            if crop_w < image_size / 2 or crop_h < image_size / 2:                continue            if x_left < 0 or y_top < 0:                continue            # compute intersection over union(IoU) between current box and all gt boxes            Iou = IoU(box, gts)            cropped_im = img[int(y_top):int(y_bottom + 1) , int(x_left):int(x_right + 1) ]            resized_im = cv2.resize(cropped_im, (image_size, image_size), interpolation=cv2.INTER_LINEAR)            #try:            #    resized_im = cv2.resize(cropped_im, (image_size, image_size), interpolation=cv2.INTER_LINEAR)            #except  Exception as e:            #    print " 1 "            #    print e            # save negative images and write label, 负样本            if np.max(Iou) < 0.3:                # Iou with all gts must below 0.3                save_file = os.path.join(neg_save_dir, "%s.jpg" % n_idx)                f2.write("%s/negative/%s.jpg" % (image_size, n_idx) + ' 0')                f2.write(" -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1\n")                cv2.imwrite(save_file, resized_im)                n_idx += 1            else:                # find gt_box with the highest iou                idx = np.argmax(Iou)                assigned_gt = gts[idx]                x1, y1, x2, y2 = assigned_gt                # compute bbox reg label,offset_x1,offset_y1相对于左上角; offset_x2,offset_y2相对于右上角                offset_x1 = (x1 - x_left) / float(crop_w)                offset_y1 = (y1 - y_top) / float(crop_h)                # offset_x2 = (x2 - x_left) / float(crop_w)                # offset_y2 = (y2 - y_top) / float(crop_h)                offset_x2 = (x2 - x_right)  / float(crop_w)                offset_y2 = (y2 - y_bottom )/ float(crop_h)                # save positive and part-face images and write labels,  正样本                if np.max(Iou) >= 0.65:                    save_file = os.path.join(pos_save_dir, "%s.jpg" % p_idx)                    f1.write("%s/positive/%s.jpg" % (image_size, p_idx) + ' 1 %.6f %.6f %.6f %.6f' % (offset_x1, offset_y1, offset_x2, offset_y2))                    f1.write(" -1 -1 -1 -1 -1 -1 -1 -1 -1 -1\n")                    cv2.imwrite(save_file, resized_im)                    p_idx += 1# part 样本                elif np.max(Iou) >= 0.4:                    save_file = os.path.join(part_save_dir, "%s.jpg" % d_idx)                    f3.write("%s/part/%s.jpg" % (image_size, d_idx) + ' -1 %.6f %.6f %.6f %.6f' % (offset_x1, offset_y1, offset_x2, offset_y2))                    f3.write(" -1 -1 -1 -1 -1 -1 -1 -1 -1 -1\n")                    cv2.imwrite(save_file, resized_im)                    d_idx += 1    f.close()    f1.close()    f2.close()    f3.close()if __name__ == "__main__":    main()


2,生成landmark样本,用作者的net1->net2生成bbox, 根据5个landmark是否都在bbox中作为判别条件:

代码如下:


#!/usr/bin/env python# -*- coding: utf-8 -*-import _init_pathsimport caffeimport cv2import numpy as np#from python_wrapper import *import osdef bbreg(boundingbox, reg):    reg = reg.T         # calibrate bouding boxes    if reg.shape[1] == 1:        print "reshape of reg"        pass # reshape of reg    w = boundingbox[:,2] - boundingbox[:,0] + 1    h = boundingbox[:,3] - boundingbox[:,1] + 1    bb0 = boundingbox[:,0] + reg[:,0]*w    bb1 = boundingbox[:,1] + reg[:,1]*h    bb2 = boundingbox[:,2] + reg[:,2]*w    bb3 = boundingbox[:,3] + reg[:,3]*h        boundingbox[:,0:4] = np.array([bb0, bb1, bb2, bb3]).T    #print "bb", boundingbox    return boundingboxdef pad(boxesA, w, h):    boxes = boxesA.copy() # shit, value parameter!!!    tmph = boxes[:,3] - boxes[:,1] + 1    tmpw = boxes[:,2] - boxes[:,0] + 1    numbox = boxes.shape[0]    dx = np.ones(numbox)    dy = np.ones(numbox)    edx = tmpw     edy = tmph    x = boxes[:,0:1][:,0]    y = boxes[:,1:2][:,0]    ex = boxes[:,2:3][:,0]    ey = boxes[:,3:4][:,0]          tmp = np.where(ex > w)[0]    if tmp.shape[0] != 0:        edx[tmp] = -ex[tmp] + w-1 + tmpw[tmp]        ex[tmp] = w-1    tmp = np.where(ey > h)[0]    if tmp.shape[0] != 0:        edy[tmp] = -ey[tmp] + h-1 + tmph[tmp]        ey[tmp] = h-1    tmp = np.where(x < 1)[0]    if tmp.shape[0] != 0:        dx[tmp] = 2 - x[tmp]        x[tmp] = np.ones_like(x[tmp])    tmp = np.where(y < 1)[0]    if tmp.shape[0] != 0:        dy[tmp] = 2 - y[tmp]        y[tmp] = np.ones_like(y[tmp])        # for python index from 0, while matlab from 1    dy = np.maximum(0, dy-1)    dx = np.maximum(0, dx-1)    y = np.maximum(0, y-1)    x = np.maximum(0, x-1)    edy = np.maximum(0, edy-1)    edx = np.maximum(0, edx-1)    ey = np.maximum(0, ey-1)    ex = np.maximum(0, ex-1)    return [dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph]def IoU(box, boxes):    """Compute IoU between detect box and gt boxes    Parameters:    ----------    box: numpy array , shape (5, ): x1, y1, x2, y2, score        input box    boxes: numpy array, shape (n, 4): x1, y1, x2, y2        input ground truth boxes    Returns:    -------    ovr: numpy.array, shape (n, )        IoU    """    box_area = (box[2] - box[0] + 1) * (box[3] - box[1] + 1)    area = (boxes[:, 2] - boxes[:, 0] + 1) * (boxes[:, 3] - boxes[:, 1] + 1)    xx1 = np.maximum(box[0], boxes[:, 0])    yy1 = np.maximum(box[1], boxes[:, 1])    xx2 = np.minimum(box[2], boxes[:, 2])    yy2 = np.minimum(box[3], boxes[:, 3])    # compute the width and height of the bounding box    w = np.maximum(0, xx2 - xx1 + 1)    h = np.maximum(0, yy2 - yy1 + 1)    inter = w * h    ovr = inter / (box_area + area - inter)    return ovrdef rerec(bboxA):    # convert bboxA to square    w = bboxA[:,2] - bboxA[:,0]    h = bboxA[:,3] - bboxA[:,1]    l = np.maximum(w,h).T    bboxA[:,0] = bboxA[:,0] + w*0.5 - l*0.5    bboxA[:,1] = bboxA[:,1] + h*0.5 - l*0.5     bboxA[:,2:4] = bboxA[:,0:2] + np.repeat([l], 2, axis = 0).T     return bboxAdef nms(boxes, threshold, type):    """nms    :boxes: [:,0:5]    :threshold: 0.5 like    :type: 'Min' or others    :returns: TODO    """    if boxes.shape[0] == 0:        return np.array([])    x1 = boxes[:,0]    y1 = boxes[:,1]    x2 = boxes[:,2]    y2 = boxes[:,3]    s = boxes[:,4]    area = np.multiply(x2-x1+1, y2-y1+1)    I = np.array(s.argsort()) # read s using I        pick = [];    while len(I) > 0:        xx1 = np.maximum(x1[I[-1]], x1[I[0:-1]])        yy1 = np.maximum(y1[I[-1]], y1[I[0:-1]])        xx2 = np.minimum(x2[I[-1]], x2[I[0:-1]])        yy2 = np.minimum(y2[I[-1]], y2[I[0:-1]])        w = np.maximum(0.0, xx2 - xx1 + 1)        h = np.maximum(0.0, yy2 - yy1 + 1)        inter = w * h        if type == 'Min':            o = inter / np.minimum(area[I[-1]], area[I[0:-1]])        else:            o = inter / (area[I[-1]] + area[I[0:-1]] - inter)        pick.append(I[-1])        I = I[np.where( o <= threshold)[0]]    return pickdef generateBoundingBox(map, reg, scale, t):    stride = 2    cellsize = 12    map = map.T    dx1 = reg[0,:,:].T    dy1 = reg[1,:,:].T    dx2 = reg[2,:,:].T    dy2 = reg[3,:,:].T    (x, y) = np.where(map >= t)    yy = y    xx = x    score = map[x,y]    reg = np.array([dx1[x,y], dy1[x,y], dx2[x,y], dy2[x,y]])    if reg.shape[0] == 0:        pass    boundingbox = np.array([yy, xx]).T    bb1 = np.fix((stride * (boundingbox) + 1) / scale).T # matlab index from 1, so with "boundingbox-1"    bb2 = np.fix((stride * (boundingbox) + cellsize - 1 + 1) / scale).T # while python don't have to    score = np.array([score])    boundingbox_out = np.concatenate((bb1, bb2, score, reg), axis=0)    return boundingbox_out.Tdef drawBoxes(im, boxes):    x1 = boxes[:,0]    y1 = boxes[:,1]    x2 = boxes[:,2]    y2 = boxes[:,3]    for i in range(x1.shape[0]):        cv2.rectangle(im, (int(x1[i]), int(y1[i])), (int(x2[i]), int(y2[i])), (0,255,0), 1)    return imdef drawBoxes_align(im, boxe):    x1 = boxe[0]    y1 = boxe[1]    x2 = boxe[2]    y2 = boxe[3]    cv2.rectangle(im, (int(x1), int(y1)), (int(x2), int(y2)), (0,255,0), 1)    return imdef drawlandmark(im, points):    for i in range(points.shape[0]):        for j in range(5):            cv2.circle(im, (int(points[i][j]), int(points[i][j+5])), 2, (255,0,0))    return imdef drawlandmark_align(im, point):    for j in range(5):        cv2.circle(im, (int(point[j*2]), int(point[j*2+1])), 2, (255,0,0))    return imfrom time import time_tstart_stack = []def tic():    _tstart_stack.append(time())def toc(fmt="Elapsed: %s s"):    print fmt % (time()-_tstart_stack.pop())def detect_face(img, minsize, PNet, RNet, threshold, fastresize, factor):        img2 = img.copy()    factor_count = 0    total_boxes = np.zeros((0,9), np.float)    points = []    h = img.shape[0]    w = img.shape[1]    minl = min(h, w)    img = img.astype(float)    m = 12.0/minsize    minl = minl*m        # create scale pyramid    scales = []    while minl >= 12:        scales.append(m * pow(factor, factor_count))        minl *= factor        factor_count += 1        # first stage    for scale in scales:        hs = int(np.ceil(h*scale))        ws = int(np.ceil(w*scale))        if fastresize:            im_data = (img-127.5)*0.0078125 # [0,255] -> [-1,1]            im_data = cv2.resize(im_data, (ws,hs)) # default is bilinear        else:             im_data = cv2.resize(img, (ws,hs)) # default is bilinear            im_data = (im_data-127.5)*0.0078125 # [0,255] -> [-1,1]        #im_data = imResample(img, hs, ws); print "scale:", scale        im_data = np.swapaxes(im_data, 0, 2)        im_data = np.array([im_data], dtype = np.float)        PNet.blobs['data'].reshape(1, 3, ws, hs)        PNet.blobs['data'].data[...] = im_data        out = PNet.forward()            boxes = generateBoundingBox(out['prob1'][0,1,:,:], out['conv4-2'][0], scale, threshold[0])        if boxes.shape[0] != 0:            pick = nms(boxes, 0.5, 'Union')            if len(pick) > 0 :                boxes = boxes[pick, :]        if boxes.shape[0] != 0:            total_boxes = np.concatenate((total_boxes, boxes), axis=0)             #np.save('total_boxes_101.npy', total_boxes)    #####    # 1 #    #####    # print "[1]:",total_boxes.shape[0]    #print total_boxes    #return total_boxes, []     numbox = total_boxes.shape[0]    if numbox > 0:        # nms        pick = nms(total_boxes, 0.7, 'Union')        total_boxes = total_boxes[pick, :]        # print "[2]:",total_boxes.shape[0]                # revise and convert to square        regh = total_boxes[:,3] - total_boxes[:,1]        regw = total_boxes[:,2] - total_boxes[:,0]        t1 = total_boxes[:,0] + total_boxes[:,5]*regw        t2 = total_boxes[:,1] + total_boxes[:,6]*regh        t3 = total_boxes[:,2] + total_boxes[:,7]*regw        t4 = total_boxes[:,3] + total_boxes[:,8]*regh        t5 = total_boxes[:,4]        total_boxes = np.array([t1,t2,t3,t4,t5]).T        total_boxes = rerec(total_boxes) # convert box to square        # print "[4]:",total_boxes.shape[0]                total_boxes[:,0:4] = np.fix(total_boxes[:,0:4])        # print "[4.5]:",total_boxes.shape[0]        #print total_boxes        [dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = pad(total_boxes, w, h)    numbox = total_boxes.shape[0]    if numbox > 0:        # second stage        # construct input for RNet        tempimg = np.zeros((numbox, 24, 24, 3)) # (24, 24, 3, numbox)        for k in range(numbox):            tmp = np.zeros((int(tmph[k]) +1, int(tmpw[k]) + 1,3))            tmp[int(dy[k]):int(edy[k])+1, int(dx[k]):int(edx[k])+1] = img[int(y[k]):int(ey[k])+1, int(x[k]):int(ex[k])+1]            #print "y,ey,x,ex", y[k], ey[k], x[k], ex[k]            #print "tmp", tmp.shape                        tempimg[k,:,:,:] = cv2.resize(tmp, (24, 24))        #print tempimg.shape        #print tempimg[0,0,0,:]        tempimg = (tempimg-127.5)*0.0078125 # done in imResample function wrapped by python        # RNet        tempimg = np.swapaxes(tempimg, 1, 3)        #print tempimg[0,:,0,0]                RNet.blobs['data'].reshape(numbox, 3, 24, 24)        RNet.blobs['data'].data[...] = tempimg        out = RNet.forward()        score = out['prob1'][:,1]        #print 'score', score        pass_t = np.where(score>threshold[1])[0]        #print 'pass_t', pass_t                score =  np.array([score[pass_t]]).T        total_boxes = np.concatenate( (total_boxes[pass_t, 0:4], score), axis = 1)        # print "[5]:",total_boxes.shape[0]        #print total_boxes        #print "1.5:",total_boxes.shape                mv = out['conv5-2'][pass_t, :].T        #print "mv", mv        if total_boxes.shape[0] > 0:            pick = nms(total_boxes, 0.7, 'Union')            # print 'pick', pick            if len(pick) > 0:                total_boxes = total_boxes[pick, :]                # print "[6]:", total_boxes.shape[0]                total_boxes = bbreg(total_boxes, mv[:, pick])                # print "[7]:", total_boxes.shape[0]                total_boxes = rerec(total_boxes)                # print "[8]:", total_boxes.shape[0]    return total_boxesdef main():    img_dir = "/media/xiao/学习/face_alignment/data/CelebA/Img/img_celeba.7z/img_celeba/"    anno_file = "celebA_bbox_landmark.txt"    with open(anno_file, 'r') as f:        annotations = f.readlines()    num = len(annotations)    print "%d pics in total" % num# 图片大小为48*48    image_size = 48    # landmark_save_dir = "48/landmark/"    landmark_save_dir = "/media/xiao/软件/mtcnn/train/48/landmark/"    # save_dir = "./" + str(image_size)    f1 = open('/media/xiao/软件/mtcnn/train/48/landmark_48.txt', 'w')    l_idx = 0  # landmark    image_idx = 0    minsize = 40    caffe_model_path = "./model"    threshold = [0.6, 0.7, 0.7]    factor = 0.709        caffe.set_mode_gpu()    PNet = caffe.Net(caffe_model_path+"/det1.prototxt", caffe_model_path+"/det1.caffemodel", caffe.TEST)    RNet = caffe.Net(caffe_model_path+"/det2.prototxt", caffe_model_path+"/det2.caffemodel", caffe.TEST)    for annotation in annotations:        # imgpath = imgpath.split('\n')[0]        annotation = annotation.strip().split(' ')        im_path = annotation[0]        # bbox = map(float, annotation[1:-10])        pts = map(float, annotation[-10:])        # boxes = np.array(bbox, dtype=np.float32).reshape(-1, 4)        im_path = img_dir + im_path        backupPts = pts[:]        #print "######\n", img_path        print image_idx        image_idx += 1        img = cv2.imread(im_path)        img_matlab = img.copy()        tmp = img_matlab[:,:,2].copy()        img_matlab[:,:,2] = img_matlab[:,:,0]        img_matlab[:,:,0] = tmp# 用作者提供的net1->net2生成人脸框        boundingboxes = detect_face(img_matlab, minsize, PNet, RNet, threshold, False, factor)        #img = drawBoxes(img, boundingboxes)        #cv2.imshow('img', img)        #cv2.waitKey(1000)        # generate landmark samples        for box in boundingboxes:            x_left, y_top, x_right, y_bottom, _ = box    # 得到人脸bbox坐标            crop_w = x_right - x_left + 1            crop_h = y_bottom - y_top + 1            # ignore box that is too small or beyond image border            if crop_w < image_size / 2 or crop_h < image_size / 2:                continue            if x_left < 0 or y_top < 0:                continue            # 当五个landmark都在bbox中时,这样的样本作为我们的landmark训练样本            if pts[0] < x_left or pts[0] > x_right:                continue            if pts[2] < x_left or pts[2] > x_right:                continue            if pts[4] < x_left or pts[4] > x_right:                continue            if pts[6] < x_left or pts[6] > x_right:                continue            if pts[8] < x_left or pts[8] > x_right:                continue            if pts[1] < y_top or pts[1] > y_bottom:                continue            if pts[3] < y_top or pts[3] > y_bottom:                continue            if pts[5] < y_top or pts[5] > y_bottom:                continue            if pts[7] < y_top or pts[7] > y_bottom:                continue            if pts[9] < y_top or pts[9] > y_bottom:                continue            # show image            #img1 = drawBoxes_align(img, box)            #img1 = drawlandmark_align(img1, pts)            #cv2.imshow('img', img1)            #cv2.waitKey(1000)            # our method, x0,y0,x1,y1,x2,y2,x3,y3,x4,y4            #for k in range(len(pts) / 2):            #    pts[k * 2] = (pts[k * 2] - x_left) / float(crop_w);            #    pts[k * 2 + 1] = (pts[k * 2 + 1] - y_top) / float(crop_h);            #author method, x0,x1,x2,x3,x4,y0,y1,y2,y3,y4            ptsss = pts[:]# landmark标注为其相对于crop区域左上角的归一化值            for k in range(len(ptsss) / 2):                pts[k] = (ptsss[k * 2] - x_left) / float(crop_w);                pts[5+k] = (ptsss[k * 2 + 1] - y_top) / float(crop_h);# 将crop区域进行resize            cropped_im = img[int(y_top):int(y_bottom + 1), int(x_left):int(x_right + 1)]            resized_im = cv2.resize(cropped_im, (image_size, image_size), interpolation=cv2.INTER_LINEAR)            # box_ = box.reshape(1, -1)            # 写图片名,class坐标,bbox坐标。            save_file = os.path.join(landmark_save_dir, "%s.jpg" % l_idx)            f1.write(str(image_size) + "/landmark/%s.jpg" % l_idx + ' -1 -1 -1 -1 -1')# 写landmark坐标并保存图片            for k in range(len(pts)):                f1.write(" %f" % pts[k])            f1.write("\n")            cv2.imwrite(save_file, resized_im)            l_idx += 1    f.close()    f1.close()if __name__ == "__main__":    main()




阅读全文
1 0
原创粉丝点击