ThreadPoolExecutor机制

来源:互联网 发布:ipc h10网络摄像机 编辑:程序博客网 时间:2024/06/06 09:08
ThreadPoolExecutor机制
一、概述
1、ThreadPoolExecutor作为java.util.concurrent包对外提供基础实现,以内部线程池的形式对外提供管理任务执行,线程调度,线程池管理等等服务;
2、Executors方法提供的线程服务,都是通过参数设置来实现不同的线程池机制。
3、先来了解其线程池管理的机制,有助于正确使用,避免错误使用导致严重故障。同时可以根据自己的需求实现自己的线程池


二、核心构造方法讲解
下面是ThreadPoolExecutor最核心的构造方法
public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }
构造方法参数讲解
参数名作用corePoolSize核心线程池大小maximumPoolSize最大线程池大小keepAliveTime线程池中超过corePoolSize数目的空闲线程最大存活时间;可以allowCoreThreadTimeOut(true)使得核心线程有效时间TimeUnitkeepAliveTime时间单位workQueue阻塞任务队列threadFactory新建线程工厂RejectedExecutionHandler当提交任务数超过maxmumPoolSize+workQueue之和时,任务会交给RejectedExecutionHandler来处理



重点讲解:
其中比较容易让人误解的是:corePoolSize,maximumPoolSize,workQueue之间关系。

1.当线程池小于corePoolSize时,新提交任务将创建一个新线程执行任务,即使此时线程池中存在空闲线程。
2.当线程池达到corePoolSize时,新提交任务将被放入workQueue中,等待线程池中任务调度执行
3.当workQueue已满,且maximumPoolSize>corePoolSize时,新提交任务会创建新线程执行任务
4.当提交任务数超过maximumPoolSize时,新提交任务由RejectedExecutionHandler处理
5.当线程池中超过corePoolSize线程,空闲时间达到keepAliveTime时,关闭空闲线程
6.当设置allowCoreThreadTimeOut(true)时,线程池中corePoolSize线程空闲时间达到keepAliveTime也将关闭


线程管理机制图示:



三、Executors提供的线程池配置方案

1、构造一个固定线程数目的线程池,配置的corePoolSize与maximumPoolSize大小相同,同时使用了一个无界LinkedBlockingQueue存放阻塞任务,因此多余的任务将存在再阻塞队列,不会由RejectedExecutionHandler处理

public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }
2、构造一个缓冲功能的线程池,配置corePoolSize=0,maximumPoolSize=Integer.MAX_VALUE,keepAliveTime=60s,以及一个无容量的阻塞队列 SynchronousQueue,因此任务提交之后,将会创建新的线程执行;线程空闲超过60s将会销毁
public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }
3、构造一个只支持一个线程的线程池,配置corePoolSize=maximumPoolSize=1,无界阻塞队列LinkedBlockingQueue;保证任务由一个线程串行执行
public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }
4、构造有定时功能的线程池,配置corePoolSize,无界延迟阻塞队列DelayedWorkQueue;有意思的是:maximumPoolSize=Integer.MAX_VALUE,由于DelayedWorkQueue是无界队列,所以这个值是没有意义的
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
        return new ScheduledThreadPoolExecutor(corePoolSize);
    }
public static ScheduledExecutorService newScheduledThreadPool(
            int corePoolSize, ThreadFactory threadFactory) {
        return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
    }
public ScheduledThreadPoolExecutor(int corePoolSize,
                             ThreadFactory threadFactory) {
        super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
              new DelayedWorkQueue(), threadFactory);
    }
四、定制属于自己的非阻塞线程池
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.RejectedExecutionHandler;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;

public class CustomThreadPoolExecutor {
 
 private ThreadPoolExecutor pool = null;
 
 
 /**
  * 线程池初始化方法
  *
  * corePoolSize 核心线程池大小----10
  * maximumPoolSize 最大线程池大小----30
  * keepAliveTime 线程池中超过corePoolSize数目的空闲线程最大存活时间----30+单位TimeUnit
  * TimeUnit keepAliveTime时间单位----TimeUnit.MINUTES
  * workQueue 阻塞队列----new ArrayBlockingQueue<Runnable>(10)====10容量的阻塞队列
  * threadFactory 新建线程工厂----new CustomThreadFactory()====定制的线程工厂
  * rejectedExecutionHandler 当提交任务数超过maxmumPoolSize+workQueue之和时,
  *        即当提交第41个任务时(前面线程都没有执行完,此测试方法中用sleep(100)),
  *                 任务会交给RejectedExecutionHandler来处理
  */
 public void init() {
  pool = new ThreadPoolExecutor(
    10,
    30,
    30,
    TimeUnit.MINUTES,
    new ArrayBlockingQueue<Runnable>(10),
    new CustomThreadFactory(),
    new CustomRejectedExecutionHandler());
 }
 
 public void destory() {
  if(pool != null) {
   pool.shutdownNow();
  }
 }
 
 
 public ExecutorService getCustomThreadPoolExecutor() {
  return this.pool;
 }
 
 private class CustomThreadFactory implements ThreadFactory {
  private AtomicInteger count = new AtomicInteger(0);
  
  @Override
  public Thread newThread(Runnable r) {
   Thread t = new Thread(r);
   String threadName = CustomThreadPoolExecutor.class.getSimpleName() + count.addAndGet(1);
   System.out.println(threadName);
   t.setName(threadName);
   return t;
  }
 }
 
 
 private class CustomRejectedExecutionHandler implements RejectedExecutionHandler {
  @Override
  public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
   // 记录异常
   // 报警处理等
   System.out.println("error.............");
  }
 }
 
 
 
 // 测试构造的线程池
 public static void main(String[] args) {
  CustomThreadPoolExecutor exec = new CustomThreadPoolExecutor();
  // 1.初始化
  exec.init();
  
  ExecutorService pool = exec.getCustomThreadPoolExecutor();
  for(int i=1; i<100; i++) {
   System.out.println("提交第" + i + "个任务!");
   pool.execute(new Runnable() {
    @Override
    public void run() {
     try {
      Thread.sleep(3000);
     } catch (InterruptedException e) {
      e.printStackTrace();
     }
     System.out.println("running=====");
    }
   });
  }
  
  
  
  // 2.销毁----此处不能销毁,因为任务没有提交执行完,如果销毁线程池,任务也就无法执行了
  // exec.destory();
  
  try {
   Thread.sleep(10000);
  } catch (InterruptedException e) {
   e.printStackTrace();
  }
 }
}
方法中建立一个核心线程数为30个,缓冲队列有10个的线程池。每个线程任务,执行时会先睡眠3秒,保证提交10任务时,线程数目被占用完,再提交30任务时,阻塞队列被占用完,,这样提交第41个任务是,会交给CustomRejectedExecutionHandler 异常处理类来处理
提交任务的代码如下:
public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            reject(command);
    }
注意:41以后提交的任务就不能正常处理了,因为,execute中提交到任务队列是用的offer方法,如上面代码,这个方法是非阻塞的,所以就会交给CustomRejectedExecutionHandler 来处理,所以对于大数据量的任务来说,这种线程池,如果不设置队列长度会OOM,设置队列长度,会有任务得不到处理,接下来我们构建一个阻塞的自定义线程池
五、定制属于自己的阻塞线程池
package com.tongbanjie.trade.test.commons;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.RejectedExecutionHandler;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
public class CustomThreadPoolExecutor { 
  
     
    private ThreadPoolExecutor pool = null; 
     
     
    /**
     * 线程池初始化方法
     * 
     * corePoolSize 核心线程池大小----1
     * maximumPoolSize 最大线程池大小----3
     * keepAliveTime 线程池中超过corePoolSize数目的空闲线程最大存活时间----30+单位TimeUnit
     * TimeUnit keepAliveTime时间单位----TimeUnit.MINUTES
     * workQueue 阻塞队列----new ArrayBlockingQueue<Runnable>(5)====5容量的阻塞队列
     * threadFactory 新建线程工厂----new CustomThreadFactory()====定制的线程工厂
     * rejectedExecutionHandler 当提交任务数超过maxmumPoolSize+workQueue之和时,
     *                          即当提交第41个任务时(前面线程都没有执行完,此测试方法中用sleep(100)),
     *                                任务会交给RejectedExecutionHandler来处理
     */ 
    public void init() { 
        pool = new ThreadPoolExecutor( 
                1, 
                3, 
                30, 
                TimeUnit.MINUTES, 
                new ArrayBlockingQueue<Runnable>(5), 
                new CustomThreadFactory(), 
                new CustomRejectedExecutionHandler()); 
    } 
 
     
    public void destory() { 
        if(pool != null) { 
            pool.shutdownNow(); 
        } 
    } 
     
     
    public ExecutorService getCustomThreadPoolExecutor() { 
        return this.pool; 
    } 
     
    private class CustomThreadFactory implements ThreadFactory { 
 
        private AtomicInteger count = new AtomicInteger(0); 
         
        @Override 
        public Thread newThread(Runnable r) { 
            Thread t = new Thread(r); 
            String threadName = CustomThreadPoolExecutor.class.getSimpleName() + count.addAndGet(1); 
            System.out.println(threadName); 
            t.setName(threadName); 
            return t; 
        } 
    } 
     
     
    private class CustomRejectedExecutionHandler implements RejectedExecutionHandler { 
 
        @Override 
        public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) { 
         try {
                                // 核心改造点,由blockingqueue的offer改成put阻塞方法
    executor.getQueue().put(r);
   } catch (InterruptedException e) {
    e.printStackTrace();
   }
        } 
    } 
     
     
     
    // 测试构造的线程池 
    public static void main(String[] args) { 
     
        CustomThreadPoolExecutor exec = new CustomThreadPoolExecutor(); 
        // 1.初始化 
        exec.init(); 
         
        ExecutorService pool = exec.getCustomThreadPoolExecutor(); 
        for(int i=1; i<100; i++) { 
            System.out.println("提交第" + i + "个任务!"); 
            pool.execute(new Runnable() { 
                @Override 
                public void run() { 
                    try { 
                     System.out.println(">>>task is running=====");
                        TimeUnit.SECONDS.sleep(10);
                    } catch (InterruptedException e) { 
                        e.printStackTrace(); 
                    } 
                } 
            }); 
        } 
         
         
        // 2.销毁----此处不能销毁,因为任务没有提交执行完,如果销毁线程池,任务也就无法执行了 
        // exec.destory(); 
         
        try { 
            Thread.sleep(10000); 
        } catch (InterruptedException e) { 
            e.printStackTrace(); 
        } 
    } 
解释:当提交任务被拒绝时,进入拒绝机制,我们实现拒绝方法,把任务重新用阻塞提交方法put提交,实现阻塞提交任务功能,防止队列过大,OOM,提交被拒绝方法在下面

public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            // 进入拒绝机制, 我们把runnable任务拿出来,重新用阻塞操作put,来实现提交阻塞功能
            reject(command);
    }
总结:
1、用ThreadPoolExecutor自定义线程池,看线程是的用途,如果任务量不大,可以用无界队列,如果任务量非常大,要用有界队列,防止OOM
2、如果任务量很大,还要求每个任务都处理成功,要对提交的任务进行阻塞提交,重写拒绝机制,改为阻塞提交。保证不抛弃一个任务
3、最大线程数一般设为2N+1最好,N是CPU核数
4、核心线程数,看应用,如果是任务,一天跑一次,设置为0,合适,因为跑完就停掉了,如果是常用线程池,看任务量,是保留一个核心还是几个核心线程数
5、如果要获取任务执行结果,用CompletionService,但是注意,获取任务的结果的要重新开一个线程获取,如果在主线程获取,就要等任务都提交后才获取,就会阻塞大量任务结果,队列过大OOM,所以最好异步开个线程获取结果