网络流--求最大流:EK算法

来源:互联网 发布:美图软件 编辑:程序博客网 时间:2024/05/20 21:19

网络流---EK算法:


首先要先清楚最大流的含义,就是说从源点到经过的所有路径的最终到达汇点的所有流量和


EK算法的核心
反复寻找源点s到汇点t之间的增广路径,若有,找出增广路径上每一段[容量-流量]的最小值delta,若无,则结束。
在寻找增广路径时,可以用BFS来找,并且更新残留网络的值(涉及到反向边)。
而找到delta后,则使最大流值加上delta,更新为当前的最大流值。

这么一个图,求源点1,到汇点3的最大流

由于我是通过模版真正理解ek的含义,所以先上代码,通过分析代码,来详细叙述ek算法

[cpp] view plain copy
 print?
  1. #include <iostream>  
  2. #include <queue>  
  3. #include<string.h>  
  4. using namespace std;  
  5. #define arraysize 201  
  6. int maxData = 0x7fffffff;  
  7. int capacity[arraysize][arraysize]; //记录残留网络的容量  
  8. int flow[arraysize];                //标记从源点到当前节点实际还剩多少流量可用  
  9. int pre[arraysize];                 //标记在这条路径上当前节点的前驱,同时标记该节点是否在队列中  
  10. int n,m;  
  11. queue<int> myqueue;  
  12. int BFS(int src,int des)  
  13. {  
  14.     int i,j;  
  15.     while(!myqueue.empty())       //队列清空  
  16.         myqueue.pop();  
  17.     for(i=1;i<m+1;++i)  
  18.     {  
  19.         pre[i]=-1;  
  20.     }  
  21.     pre[src]=0;  
  22.     flow[src]= maxData;  
  23.     myqueue.push(src);  
  24.     while(!myqueue.empty())  
  25.     {  
  26.         int index = myqueue.front();  
  27.         myqueue.pop();  
  28.         if(index == des)            //找到了增广路径  
  29.             break;  
  30.         for(i=1;i<m+1;++i)  
  31.         {  
  32.             if(i!=src && capacity[index][i]>0 && pre[i]==-1)  
  33.             {  
  34.                  pre[i] = index; //记录前驱  
  35.                  flow[i] = min(capacity[index][i],flow[index]);   //关键:迭代的找到增量  
  36.                  myqueue.push(i);  
  37.             }  
  38.         }  
  39.     }  
  40.     if(pre[des]==-1)      //残留图中不再存在增广路径  
  41.         return -1;  
  42.     else  
  43.         return flow[des];  
  44. }  
  45. int maxFlow(int src,int des)  
  46. {  
  47.     int increasement= 0;  
  48.     int sumflow = 0;  
  49.     while((increasement=BFS(src,des))!=-1)  
  50.     {  
  51.          int k = des;          //利用前驱寻找路径  
  52.          while(k!=src)  
  53.          {  
  54.               int last = pre[k];  
  55.               capacity[last][k] -= increasement; //改变正向边的容量  
  56.               capacity[k][last] += increasement; //改变反向边的容量  
  57.               k = last;  
  58.          }  
  59.          sumflow += increasement;  
  60.     }  
  61.     return sumflow;  
  62. }  
  63. int main()  
  64. {  
  65.     int i,j;  
  66.     int start,end,ci;  
  67.     while(cin>>n>>m)  
  68.     {  
  69.         memset(capacity,0,sizeof(capacity));  
  70.         memset(flow,0,sizeof(flow));  
  71.         for(i=0;i<n;++i)  
  72.         {  
  73.             cin>>start>>end>>ci;  
  74.             if(start == end)               //考虑起点终点相同的情况  
  75.                continue;  
  76.             capacity[start][end] +=ci;     //此处注意可能出现多条同一起点终点的情况  
  77.         }  
  78.         cout<<maxFlow(1,m)<<endl;  
  79.     }  
  80.     return 0;  
  81. }  


显而易见capacity存变的流量,进行ek求解

对于BFS找增广路:

1.         flow[1]=INF,pre[1]=0;

源点1进队列,开始找增广路,capacity[1][2]=40>0,则flow[2]=min(flow[1],40)=40;

        capacity[1][4]=20>0,则flow[4]=min(flow[1],20)=20;

        capacity[2][3]=30>0,则flow[3]=min(folw[2]=40,30)=30;

        capacity[2][4]=30,但是pre[4]=1(已经在capacity[1][4]这遍历过4号点了)

        capacity[3][4].....

        当index=4(汇点),结束增广路的寻找

        传递回increasement(该路径的流),利用前驱pre寻找路径

路径也自然变成了这样:

2.flow[1]=INF,pre[1]=0;

 源点1进队列,开始找增广路,capacity[1][2]=40>0,则flow[2]=min(flow[1],40)=40;

        capacity[1][4]=0!>0,跳过

        capacity[2][3]=30>0,则flow[3]=min(folw[2]=40,30)=30;

        capacity[2][4]=30,pre[4]=2,则flow[2][4]=min(flow[2]=40,20)=20;

        capacity[3][4].....

        当index=4(汇点),结束增广路的寻找

        传递回increasement(该路径的流),利用前驱pre寻找路径

 图也被改成

  

接下来同理

这就是最终完成的图,最终sumflow=20+20+10=50(这个就是最大流的值)

 

 

PS,为什么要有反向边呢?

 

我们第一次找到了1-2-3-4这条增广路,这条路上的delta值显然是1。于是我们修改后得到了下面这个流。(图中的数字是容量)

 

这时候(1,2)和(3,4)边上的流量都等于容量了,我们再也找不到其他的增广路了,当前的流量是1。

但这个答案明显不是最大流,因为我们可以同时走1-2-4和1-3-4,这样可以得到流量为2的流。

那么我们刚刚的算法问题在哪里呢?问题就在于我们没有给程序一个”后悔”的机会,应该有一个不走(2-3-4)而改走(2-4)的机制。那么如何解决这个问题呢?回溯搜索吗?那么我们的效率就上升到指数级了。

而这个算法神奇的利用了一个叫做反向边的概念来解决这个问题。即每条边(I,j)都有一条反向边(j,i),反向边也同样有它的容量。

我们直接来看它是如何解决的:

在第一次找到增广路之后,在把路上每一段的容量减少delta的同时,也把每一段上的反方向的容量增加delta。即在Dec(c[x,y],delta)的同时,inc(c[y,x],delta)

我们来看刚才的例子,在找到1-2-3-4这条增广路之后,把容量修改成如下

这时再找增广路的时候,就会找到1-3-2-4这条可增广量,即delta值为1的可增广路。将这条路增广之后,得到了最大流2。

 

那么,这么做为什么会是对的呢?我来通俗的解释一下吧。

事实上,当我们第二次的增广路走3-2这条反向边的时候,就相当于把2-3这条正向边已经是用了的流量给”退”了回去,不走2-3这条路,而改走从2点出发的其他的路也就是2-4。(有人问如果这里没有2-4怎么办,这时假如没有2-4这条路的话,最终这条增广路也不会存在,因为他根本不能走到汇点)同时本来在3-4上的流量由1-3-4这条路来”接管”。而最终2-3这条路正向流量1,反向流量1,等于没有流量。

这就是这个算法的精华部分,利用反向边,使程序有了一个后悔和改正的机会。而这个算法和我刚才给出的代码相比只多了一句话而已。

至此,最大流Edmond-Karp算法介绍完毕。


转自:http://www.cnblogs.com/zsboy/archive/2013/01/27/2878810.html?ADUIN=382101937&ADSESSION=1406854211&ADTAG=CLIENT.QQ.5329_.0&ADPUBNO=26344#userconsent#


原创粉丝点击