第二周项目3体验复杂度

来源:互联网 发布:php网页联机游戏源码 编辑:程序博客网 时间:2024/05/20 18:50

【项目3 - 体验复杂度】 
1.两种排序算法的运行时间
  排序是计算机科学中的一个基本问题,产生了很多种适合不同情况下适用的算法,也一直作为算法研究的热点。本项目提供两种排序算法,复杂度为O(n2)的选择排序selectsort,和复杂度为O(nlogn)的快速排序quicksort,在main函数中加入了对运行时间的统计。
  请阅读后附的程序1和程序2,利用一个将近10万条数据的文件作为输入数据运行程序,感受两种算法在运行时间上的差异。

(1)复杂度是O(n2)的选择排序程序

#include <stdio.h>#include <time.h>#include <stdlib.h>#define MAXNUM 100000void selectsort(int a[], int n){        int i, j, k, tmp;        for(i = 0; i < n-1; i++)        {                k = i;                for(j = i+1; j < n; j++)                {                        if(a[j] < a[k])                                k = j;                }                if(k != j)                {                        tmp = a[i];                        a[i] = a[k];                        a[k] = tmp;                }        }}int main(){    int x[MAXNUM];    int n = 0;    double t1,t2;    FILE *fp;    fp = fopen("numbers.txt", "r");    if(fp==NULL)    {        printf("打开文件错!请下载文件,并将之复制到与源程序文件同一文件夹下。\n");        exit(1);    }    while(fscanf(fp, "%d", &x[n])!=EOF)        n++;    printf("数据量:%d, 开始排序....", n);    t1=time(0);    selectsort(x, n);    t2=time(0);    printf("用时 %d 秒!", (int)(t2-t1));    fclose(fp);    return 0;}

运行结果:

(2)复杂度为O(nlogn)的快速排序程序  

#include <stdio.h>#include <time.h>#include <stdlib.h>#define MAXNUM 100000void quicksort(int data[],int first,int last){    int i, j, t, base;    if (first>last)        return;    base=data[first];     i=first;    j=last;    while(i!=j)     {        while(data[j]>=base && i<j)             j--;        while(data[i]<=base && i<j)             i++;        /*交换两个数*/        if(i<j)        {            t=data[i];            data[i]=data[j];            data[j]=t;        }    }    data[first]=data[i];     data[i]=base;     quicksort(data,first,i-1);    quicksort(data,i+1,last); }int main(){    int x[MAXNUM];    int n = 0;    double t1,t2;    FILE *fp;    fp = fopen("numbers.txt", "r");    if(fp==NULL)    {        printf("打开文件错!请下载文件,并将之复制到与源程序文件同一文件夹下。\n");        exit(1);    }        while(fscanf(fp, "%d", &x[n])!=EOF)        n++;    printf("数据量:%d, 开始排序....", n);    t1=time(0);    quicksort(x, 0, n-1);    t2=time(0);    printf("用时 %d 秒!", (int)(t2-t1));    fclose(fp);    return 0;}

运行结果:


2.汉诺塔

  有一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。
  可以算法出,当盘子数为n个时,需要移动的次数是f(n)=2n1。n=64时,假如每秒钟移一次,共需要18446744073709551615秒。一个平年365天有31536000秒,闰年366天有31622400秒,平均每年31556952秒,移完这些金片需要5845.54亿年以上,而地球存在至今不过45亿年,太阳系的预期寿命据说也就是数百亿年。真的过了5845.54亿年,不说太阳系和银河系,至少地球上的一切生命,连同梵塔、庙宇等,都早已经灰飞烟灭。据此,2n从数量级上看大得不得了。
  用递归算法求解汉诺塔问题,其复杂度可以求得为
O(2n),是指数级的算法。请到课程主页下载程序运行一下,体验盘子数discCount为4、8、16、20、24时在时间耗费上的差异,你能忍受多大的discCount。 

#include <stdio.h>#define discCount 4long move(int, char, char,char);int main(){    long count;    count=move(discCount,'A','B','C');    printf("%d个盘子需要移动%ld次\n", discCount, count);    return 0;}long move(int n, char A, char B,char C){    long c1,c2;    if(n==1)        return 1;    else    {        c1=move(n-1,A,C,B);        c2=move(n-1,B,A,C);        return c1+c2+1;    }}

运行结果:


知识点总结:

算法复杂度影响程序的运行

学习心得:

执行同样程序 不同复杂度运行时间也不同

递归算法有助于解决问题