关于计算机的内码表示的总结(补码,反码,移码,原码)

来源:互联网 发布:手机解锁软件打不开 编辑:程序博客网 时间:2024/05/16 13:54

声明:本文的内容完全来源于百度百科以及一些网友的博客,撰写本文的目的是为了更方便的理解计算机的各种编码知识。在此向各位提供材料的朋友致谢,也希望本文的总结能给其他网友一些帮助。

 

补码

  

补码举例

1、在计算机系统中,数值一律用补码来表示(存储)。
  主要原因:使用补码,可以将符号位和其它位统一处理;同时,减法也可按加法来处理。另外,两个用补
  码表示的数相加时,如果最高位(符号位)有进位,则进位被舍弃。
  2、补码与原码的转换过程几乎是相同的。
  数值的补码表示也分两种情况:
  (1)正数的补码:与原码相同。
  例如,+9的补码是00001001。
  (2)负数的补码:符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。
  例如,-7的补码:因为是负数,则符号位为“1”,整个为10000111;其余7位为-7的绝对值+7的原码
  0000111按位取反为1111000;再加1,所以-7的补码是11111001。
  已知一个数的补码,求原码的操作分两种情况:
  (1)如果补码的符号位为“0”,表示是一个正数,所以补码就是该数的原码。
  (2)如果补码的符号位为“1”,表示是一个负数,求原码的操作可以是:符号位为1,其余各位取
  反,然后再整个数加1。
  例如,已知一个补码为11111001,则原码是10000111(-7):因为符号位为“1”,表示是一个负
  数,所以该位不变,仍为“1”;其余7位1111001取反后为0000110;再加1,所以是10000111。
  在“闲扯原码、反码、补码”文件中,没有提到一个很重要的概念“模”。我在这里稍微介绍一下“模”
  的概念:
  “模”是指一个计量系统的计数范围。如时钟等。计算机也可以看成一个计量机器,它也有一个计量范
  围,即都存在一个“模”。例如:
  时钟的计量范围是0~11,模=12。
  表示n位的计算机计量范围是0~2^(n)-1,模=2^(n)。
  “模”实质上是计量器产生“溢出”的量,它的值在计量器上表示不出来,计量器上只能表示出模的
  余数。任何有模的计量器,均可化减法为加法运算。
  例如: 假设当前时针指向10点,而准确时间是6点,调整时间可有以下两种拨法:
  一种是倒拨4小时,即:10-4=6
  另一种是顺拨8小时:10+8=12+6=6
  在以12模的系统中,加8和减4效果是一样的,因此凡是减4运算,都可以用加8来代替。
  对“模”而言,8和4互为补数。实际上以12模的系统中,11和1,10和2,9和3,7和5,6和6都有这个特
  性。共同的特点是两者相加等于模。
  对于计算机,其概念和方法完全一样。n位计算机,设n=8, 所能表示的最大数是11111111,若再
  加1称为100000000(9位),但因只有8位,最高位1自然丢失。又回了00000000,所以8位二进制系统的
  模为2^8。 在这样的系统中减法问题也可以化成加法问题,只需把减数用相应的补数表示就可以
  了。把补数用到计算机对数的处理上,就是补码。
  另外两个概念
  一的补码(one's complement) 指的是正数=原码,负数=反码
  而二的补码(two's complement) 指的就是通常所指的补码。
  3.补码的绝对值(称为真值)
  【例7】-65的补码是10111111
  若直接将10111111转换成十进制,发现结果并不是-65,而是191。
  事实上,在计算机内,如果是一个二进制数,其最左边的位是1,则我们可以判定它为负数,并且是用补码表示。
  若要得到一个负二进制数的绝对值(称为真值),只要各位(包括符号位)取反,再加1,就得到真值。
  如:二进制值:10111111(-65的补码)
  各位取反:01000000
  加1:01000001(+65的补码)
  这里补充补码的代数加减运算:
  1、补码加法
  [X+Y]补 = [X]补 + [Y]补
  【例8】X=+0110011,Y=-0101001,求[X+Y]补
  [X]补=00110011 [Y]补=11010111
  [X+Y]补 = [X]补 + [Y]补 = 00110011+11010111=00001010
  注:因为计算机中运算器的位长是固定的,上述运算中产生的最高位进位将丢掉,所以结果不是
  100001010,而是00001010。
  2、补码减法
  [X-Y]补 = [X]补 - [Y]补 = [X]补 + [-Y]补
  其中[-Y]补称为负补,求负补的方法是:符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。
  【例9】1+(-1) [十进制]
  1的原码00000001 转换成补码:00000001
  -1的原码10000001 转换成补码:11111111
  1+(-1)=0
  00000001+111111111=00000000
  00000000转换成十进制为0
  0=0所以运算正确。
  这里补充补码的代数解释:
  任何一个数都可以表示为-a=2^(n-1)-2^(n-1)-a;
  这个假设a为正数,那么-a就是负数。而根据二进制转十进制数的方法,我们可以把a表示为:a=k0*2^0+k1*2^1+k2*2^2+……+k(n-2)*2^(n-2)
  这里k0,k1,k2,k(n-2)是1或者0,而且这里设a的二进制位数为n位,即其模为2^(n-1),而2^(n-1)其二项展开是:1+2^0+2^1+2^2+……+2^(n-2),而式子:-a=2^(n-1)-2^(n-1)-a中,2^(n-1)-a代入a=k0*2^0+k1*2^1+k2*2^2+……+k(n-2)*2^(n-2)和2^(n-1)=1+2^0+2^1+2^2+……+2^(n-2)两式,2^(n-1)-a=(1-k(n-2))*2^(n-2)+(1-k(n-3))*2^(n-3)+……+(1-k2)*2^2+(1-k1)*2^1+(1-k0)*2^0+1,而这步转化正是取反再加1的规则的代数原理所在。因为这里k0,k1,k2,k3……不是0就是1,所以1-k0,1-k1,1-k2的运算就是二进制下的取反,而为什么要加1,追溯起来就是2^(n-1)的二项展开式最后还有一项1的缘故。而-a=2^(n-1)-2^(n-1)-a中,还有-2^(n-1)这项未解释,这项就是补码里首位的1,首位1在转化为十进制时要乘上2^(n-1),这正是n位二进制的模。
  不能贴公式,所以看起来很麻烦,如果写成代数式子看起来是很方便的。

  注:n位二进制,最高位为符号位,因此表示的数值范围-2^(n-1) ——2^(n-1) -1,所以模为2^(n-1)。上面提到的8位二进制模为2^8是因为最高位非符号位,表示的数值范围为0——2^8-1。

闲扯原码、反码、补码

   相信大家看到这个标题都不屑一顾,因为在任何一本计算机基础知识书的第一章都有他们的解释,但是在书上我们只能找到一些简单的定义,没次看过之后不久就忘了。最近论坛里有人问起这些概念,看到很多人的回复是以前看过现在忘了去看看某某书之类,很少有给出一个合理的解释。于是本人就开始思考(虽然上帝会发笑,我还是要思考。),于是得出了以下的结论。

 

   数值在计算机中表示形式为机器数,计算机只能识别01,使用的是二进制,而在日常生活中人们使用的是十进制,"正如亚里士多德早就指出的那样,今天十进制的广泛采用,只不过我们绝大多数人生来具有10个手指头这个解剖学事实的结果.尽管在历史上手指计数(5,10进制)的实践要比二或三进制计数出现的晚."(摘自<<数学发展史>>有空大家可以看看哦~,很有意思的).为了能方便的与二进制转换,就使用了十六进制(2 4)和八进制(23).下面进入正题.

数值有正负之分,计算机就用一个数的最高位存放符号(0为正,1为负).这就是机器数的原码了.假设机器能处理的位数为8.即字长为1byte,原码能表示数值的范围为

(-127~-0 +0~127)256.

有了数值的表示方法就可以对数进行算术运算.但是很快就发现用带符号位的原码进行乘除运算时结果正确,而在加减运算的时候就出现了问题,如下: 假设字长为8bits

( 1 ) 10- ( 1 )10 = ( 1 )10 + ( -1 )10 = ( 0 )10

(00000001) + (10000001) = (10000010) = ( -2 ) 显然不正确.

因为在两个整数的加法运算中是没有问题的,于是就发现问题出现在带符号位的负数身上,对除符号位外的其余各位逐位取反就产生了反码.反码的取值空间和原码相同且一一对应. 下面是反码的减法运算:

( 1 )10 - ( 1 ) 10= ( 1 ) 10+ ( -1 ) 10= ( 0 )10

(00000001) + (11111110) = (11111111) = ( -0 ) 有问题.

( 1 )10 - ( 2)10 = ( 1 )10 + ( -2 )10 = ( -1 )10

(00000001) + (11111101) = (11111110) = ( -1 ) 正确

问题出现在(+0)(-0),在人们的计算概念中零是没有正负之分的.(印度人首先将零作为标记并放入运算之中,包含有零号的印度数学和十进制计数对人类文明的贡献极大).

于是就引入了补码概念. 负数的补码就是对反码加一,而正数不变,正数的原码反码补码是一样的.在补码中用(-128)代替了(-0),所以补码的表示范围为:

(-128~0~127)256.

注意:(-128)没有相对应的原码和反码, (-128) = (10000000) 补码的加减运算如下:

( 1 ) 10- ( 1 ) 10= ( 1 )10 + ( -1 )10 = ( 0 )10

(00000001) + (11111111) = (00000000) = ( 0 ) 正确

( 1 ) 10- ( 2) 10= ( 1 )10 + ( -2 )10 = ( -1 )10

(00000001) + (11111110) = (11111111) = ( -1 ) 正确

   所以补码的设计目的是:

     ⑴使符号位能与有效值部分一起参加运算,从而简化运算规则.

⑵使减法运算转换为加法运算,进一步简化计算机中运算器的线路设计

所有这些转换都是在计算机的最底层进行的,而在我们使用的汇编、C等其他高级语言中使用的都是原码。看了上面这些大家应该对原码、反码、补码有了新的认识了吧!

移码

当真值用补码表示时,由于符号位和数值部分一起编码,与习惯上的表示法不同,因此人们很难从补码的形式上判断其大小,例如:十进制数21,对应的二进制数为+10101,则其补码为0,10101,十进制数-21,对应的二进制数为-10101,则其补码为1,01011
   上述补码表示中‘,’是不存在的。因此,从代码形式看,符号位也是一位二进制数。按6位二进制代码比较大小的话,会得出101011>010101,这与实际大小恰好相反。
如果对每个真值加上2的n次方(n为上述真值中除去符号位后的位数),会得出
10101+100000=110101
-10101+100000=001011
再比较它们的大小会得出110101>001011,这样一来6位代码本身就可以看出它们的大小。(上面的110101是+10101的移码,001011是-10101的移码)。说的再通俗一点,你把数值用移码表示出来可以一眼看出他们的大小。移码常用来比较大小,一般会把浮点数的阶码用移码表示,这样很容易判断阶码的大小。
    实际把数值转换成移码表示的时候,并不需要按上面的方法来算,只须将该数值的补码的符号位取反就可以了(同一个真值的移码和补码仅差一个符号位)。

补充点

移码的定义是这样子:
[x]移=2^n+x 这里x表示真值,而2^n>x>=-2^-n
通俗点说,移码就是无论正负,在真值上加一个常数2^n

移码的名字是这样来的: 在数轴上,移码所表示的范围,恰好对应于真值在数轴上的范围向正方向移动2^n个单元。 (这句说的很好!!)

引入移码是这样的考虑:
补码表示的好处在于去掉了负号,但人们很难从形式上判断真值大小,与人们的习惯不符;因为补码表示中符号也成了一位二进制的数,补码的表示中与真值相差一个符号位,而且可以从补码看出真值的大小,转换方便 。

移码主要用于表示浮点数的阶码,在浮点数运算中有优势,而且还有用两位符号位的移码,也就是说加上4^n,这就加上了溢出处理了。

在原码上加上一个数,成为移码。
例如,7(10) = 0111(2)(四位)
加上偏移1000成为1111
相应的3的移码为1011、2为1010、1为1001......
原创粉丝点击