C++ young 程序库——y_deque.hpp

来源:互联网 发布:sql的功能包括 编辑:程序博客网 时间:2024/06/05 12:43

文件位置:young/y_deque.hpp

/*
The young Library
Copyright (c) 2005 by 杨桓

Permission to use, copy, modify, distribute and sell this software for any
purpose is hereby granted without fee, provided that the above copyright
notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation.
The author make no representations about the suitability of this software
for any purpose. It is provided "as is" without express or implied warranty.
*/

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
#ifndef __MACRO_CPLUSPLUS_YOUNG_LIBRARY_DEQUE_HEADER_FILE__
#define __MACRO_CPLUSPLUS_YOUNG_LIBRARY_DEQUE_HEADER_FILE__
//-----------------------------------------------------------------------------
#include "y_allocator.hpp"
#include "y_initialization.hpp"
#include "y_exception.hpp"
#include "algorithm/y_algorithm_base.hpp"
#include "algorithm/y_algorithm_copy.hpp"
#include "algorithm/y_algorithm_compare.hpp"
#include "algorithm/y_algorithm_fill.hpp"
//-----------------------------------------------------------------------------
__MACRO_CPLUSPLUS_YOUNG_LIBRARY_BEGIN_NAMESPACE__
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

static const def_size_t init_map_size = 32;

inline def_size_t deque_buffer_size( def_size_t buf_size,
                                     def_size_t type_bytes )
{
    if( buf_size != 0 )
        return buf_size;
    else
        return ( type_bytes < 512 ? (512 / type_bytes) : 1 );
}

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

template< typename T, typename Ref, typename Ptr, typename Alloc, def_size_t >
class deque_iterator;

template< typename T, typename Allocator, def_size_t >
class deque;

template< typename T, typename Alloc, def_size_t buf_size >
inline deque_iterator<T, T&, T*, Alloc, buf_size>
const_iter_cast( const deque_iterator<T, const T&, const T*,
                                      Alloc, buf_size>& citer );


template< typename T, typename Ref, typename Ptr, typename Alloc,
          def_size_t buf_size >
class deque_iterator
{
public:
    typedef  random_access_iterator_tag  iterator_category;
    typedef  def_size_t                  size_type;
    typedef  def_ptrdiff_t               difference_type;
    typedef  T                           value_type;
    typedef  Ref                         reference;
    typedef  Ptr                         pointer;
    typedef  T**                         map_pointer;

    typedef  deque_iterator<T, Ref, Ptr, Alloc, buf_size>
             self;

    typedef  deque_iterator<T, T&, T*, Alloc, buf_size>
             iterator;

    typedef  deque_iterator<T, const T&, const T*, Alloc, buf_size>
             const_iterator;

private:
    typedef  typename primal_type<Ref>::contrary_const_ref  Ref_t;
    typedef  typename primal_type<Ptr>::contrary_const_ptr  Ptr_t;

    friend class deque<T, Alloc, buf_size>;
    friend class deque_iterator<T, Ref_t, Ptr_t, Alloc, buf_size>;
    friend iterator const_iter_cast <> ( const const_iterator& );


    value_type*   current;
    value_type*   first;
    value_type*   last;
    value_type**  node;


    void set_node( map_pointer new_node )
    {
        node = new_node;
        first = *node;
        last = first + buffer_size();
    }

    static size_type buffer_size()
        {  return  deque_buffer_size( buf_size, sizeof(T) );  }

public:
    deque_iterator() : current(NULL_POINTER), first(NULL_POINTER),
                       last(NULL_POINTER), node(NULL_POINTER)  {}

    deque_iterator( T* curr, map_pointer mp )
    : current(curr), first(*mp), last(*mp + buffer_size()), node(mp)  {}

    deque_iterator( const iterator& x )
    : current(x.current), first(x.first), last(x.last), node(x.node)  {}

    self& operator=( def_nullptr_t n )
    {
        if( n == NULL_POINTER )
        {
            current = NULL_POINTER;
            first = NULL_POINTER;
            last = NULL_POINTER;
            node = NULL_POINTER;
        }
        return *this;
    }

    pointer operator->() const   {  return current;  }
    reference operator*() const  {  return *current;  }

    bool operator!() const  {  return ( !current && !first && !last && !node );  }

    bool operator==( const self& rhs ) const  {  return current == rhs.current;  }
    bool operator!=( const self& rhs ) const  {  return current != rhs.current;  }

    bool operator<( const self& rhs ) const
        {  return ( node == rhs.node ? current < rhs.current : node < rhs.node );  }

    self& operator++()
    {
        ++current;
        if( current == last )
        {
            set_node( node + 1 );
            current = first;
        }
        return *this;
    }

    self operator++(int)  {  self old = *this;  ++( *this );  return old;  }

    self& operator--()
    {
        if( current == first )
        {
            set_node( node - 1 );
            current = last;
        }
        --current;
        return *this;
    }

    self operator--(int)  {  self old = *this;  --( *this );  return old;  }

    self& operator-=( difference_type n )  {  return ( *this += -n );  }

    def_ptrdiff_t operator-( const self& rhs ) const
    {
        return ( def_ptrdiff_t( buffer_size() ) * ( node - rhs.node - 1 )
                 + ( current - first ) + ( rhs.last - rhs.current ) );
    }

    self& operator+=( difference_type n )
    {
        difference_type buf = difference_type( buffer_size() );
        difference_type offset = n + ( current - first );  //计算指针的偏移量

        if( offset >= 0 && offset < buf )
            current += n;
        else  //指针可能需要后退或者是跳到其他的内存块
        {
            difference_type node_offset;

            if( offset > 0 )
                node_offset = offset / buf;
            else
                node_offset = -( (-offset - 1) / buf ) - 1;

            set_node( node + node_offset );
            current = first + ( offset - node_offset * buf );
        }
        return *this;
    }
};  //end iterator

template< typename T, typename Ref, typename Ptr, typename Alloc,
          def_size_t buf_size >
inline deque_iterator<T, Ref, Ptr, Alloc, buf_size>
operator-( const deque_iterator<T, Ref, Ptr, Alloc, buf_size>& lhs, def_ptrdiff_t n )
{
    deque_iterator<T, Ref, Ptr, Alloc, buf_size> temp( lhs );
    return ( temp -= n );
}

template< typename T, typename Ref, typename Ptr, typename Alloc,
          def_size_t buf_size >
inline deque_iterator<T, Ref, Ptr, Alloc, buf_size>
operator+( const deque_iterator<T, Ref, Ptr, Alloc, buf_size>& lhs, def_ptrdiff_t n )
{
    deque_iterator<T, Ref, Ptr, Alloc, buf_size> temp( lhs );
    return ( temp += n );
}

template< typename T, typename Ref, typename Ptr, typename Alloc,
          def_size_t buf_size >
inline deque_iterator<T, Ref, Ptr, Alloc, buf_size>
operator+( def_ptrdiff_t n, const deque_iterator<T, Ref, Ptr, Alloc, buf_size>& rhs )
{
    deque_iterator<T, Ref, Ptr, Alloc, buf_size> temp( rhs );
    return ( temp += n );
}

template< typename T, typename Ref, typename Ptr, typename Alloc,
          def_size_t buf_size >
inline bool operator>( const deque_iterator<T, Ref, Ptr, Alloc, buf_size>& lhs,
                       const deque_iterator<T, Ref, Ptr, Alloc, buf_size>& rhs )
{
    return ( rhs < lhs );
}

template< typename T, typename Ref, typename Ptr, typename Alloc,
          def_size_t buf_size >
inline bool operator<=( const deque_iterator<T, Ref, Ptr, Alloc, buf_size>& lhs,
                        const deque_iterator<T, Ref, Ptr, Alloc, buf_size>& rhs )
{
    return !( rhs < lhs );
}

template< typename T, typename Ref, typename Ptr, typename Alloc,
          def_size_t buf_size >
inline bool operator>=( const deque_iterator<T, Ref, Ptr, Alloc, buf_size>& lhs,
                        const deque_iterator<T, Ref, Ptr, Alloc, buf_size>& rhs )
{
    return !( lhs < rhs );
}

template< typename T, typename Alloc, def_size_t buf_size >
inline deque_iterator<T, T&, T*, Alloc, buf_size>
const_iter_cast( const deque_iterator<T, const T&, const T*,
                                      Alloc, buf_size>& citer )
{
    return deque_iterator<T, T&, T*, Alloc,
                          buf_size>( citer.current, citer.node );
}

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

template< typename T, typename Allocator = allocator<T>,
          def_size_t buf_size = 0 >
class deque
{
public:
    typedef  deque<T, Allocator, buf_size>  self;
    typedef  Allocator                      allocator_type;

    typedef  T                  value_type;
    typedef  value_type&        reference;
    typedef  const value_type&  const_reference;
    typedef  value_type*        pointer;
    typedef  const value_type*  const_pointer;
    typedef  def_size_t         size_type;
    typedef  def_ptrdiff_t      difference_type;

    typedef  deque_iterator<T, T&, T*, Allocator, buf_size>
             iterator;
    typedef  deque_iterator<T, const T&, const T*, Allocator, buf_size>
             const_iterator;

    typedef  Reverse_Iterator<iterator>        reverse_iterator;
    typedef  Reverse_Iterator<const_iterator>  const_reverse_iterator;

protected:
    typedef  pointer*        map_pointer;
    typedef  allocator_type  data_allocator;
    typedef  typename Allocator::template rebind<pointer>::other  map_allocator;
//    typedef  allocator<pointer>  map_allocator;

    static size_type buffer_size()
    {
        return deque_buffer_size( buf_size, sizeof(value_type) );
    }


    map_pointer  m_map;
    size_type    m_map_size;
    iterator     m_start, m_finish;
    map_allocator   m_map_alloc;
    data_allocator  m_data_alloc;

public:
    deque() : m_map(NULL_POINTER), m_map_size(0), m_start(), m_finish()
    {
        alloc_map_and_nodes( 0 );
    }

    explicit deque( size_type size )
    : m_map(NULL_POINTER), m_map_size(0), m_start(), m_finish()
    {
        fill_init( size, value_type() );
    }

    deque( size_type size, const_reference value )
    : m_map(NULL_POINTER), m_map_size(0), m_start(), m_finish()
    {
        fill_init( size, value );
    }

    deque( int size, const_reference value )
    : m_map(NULL_POINTER), m_map_size(0), m_start(), m_finish()
    {
        fill_init( static_cast<size_type>( size ), value );
    }

    deque( long size, const_reference value )
    : m_map(NULL_POINTER), m_map_size(0), m_start(), m_finish()
    {
        fill_init( static_cast<size_type>( size ), value );
    }

    template< typename InputIterator >
    deque( InputIterator first, InputIterator last, size_type size = 0 )
    : m_map(NULL_POINTER), m_map_size(0), m_start(), m_finish()
    {
     typedef  typename iterator_traits<InputIterator>::iterator_category
              cate;
        range_init( first, last, size, cate() );
    }

    deque( const self& rhs )
    : m_map(NULL_POINTER), m_map_size(0), m_start(), m_finish()
    {
        alloc_map_and_nodes( rhs.size() );
        try
        {
            init_copy( rhs.begin(), rhs.end(), begin() );
        }
        catch(...)
        {
            free_map_and_nodes();
            throw;
        }
    }

    deque& operator=( const self& rhs );

    ~deque();

    iterator begin()              {  return m_start;  }
    iterator end()                {  return m_finish;  }
    const_iterator begin() const  {  return m_start;  }
    const_iterator end() const    {  return m_finish;  }

    reverse_iterator rbegin()              {  return m_finish;  }
    reverse_iterator rend()                {  return m_start;  }
    const_reverse_iterator rbegin() const
        {  return const_reverse_iterator(m_finish);  }
    const_reverse_iterator rend() const
        {  return const_reverse_iterator(m_start);  }

    reference front()              {  return *m_start;  }
    reference back()               {  return *(--end());  }
    const_reference front() const  {  return *m_start;  }
    const_reference back() const   {  return *(--end());  }

    bool empty() const          {  return ( m_start == m_finish );  }
    size_type size() const      {  return ( m_finish - m_start );  }
    size_type max_size() const  {  return size_t_max;  }

    reference operator[]( size_type index )
    {
        iterator result = m_start;
        return *( result += index );
    }
    const_reference operator[]( size_type index ) const
    {
        const_iterator result = m_start;
        return *( result += index );
    }

    reference at( size_type index )
    {
        if( index >= size() )
            throw_out_of_range( "deque::at()" );
        iterator result = m_start;
        return *( result += index );
    }
    const_reference at( size_type index ) const
    {
        if( index >= size() )
            throw_out_of_range( "deque::at()" );
        const_iterator result = m_start;
        return *( result += index );
    }

    void swap( self& rhs )
    {
        if( this != &rhs )
        {
            data_swap( m_map, rhs.m_map );
            data_swap( m_map_size, rhs.m_map_size );
            data_swap( m_start, rhs.m_start );
            data_swap( m_finish, rhs.m_finish );
            data_swap( m_map_alloc, rhs.m_map_alloc );
            data_swap( m_data_alloc, rhs.m_data_alloc );
        }
    }

    void push_back( const_reference value )
    {
        if( m_finish.current != (m_finish.last - 1) )
        {
            construct( m_finish.current, value );
            ++m_finish.current;
        }
        else
            push_back_aux( value );
    }

    void push_front( const_reference value )
    {
        if( m_start.current != m_start.first )
        {
            construct( m_start.current - 1, value );
            --m_start.current;
        }
        else
            push_front_aux( value );
    }

    void pop_back()
    {
        if( m_finish.current != m_finish.first )
        {
            destroy( m_finish.current );
            --m_finish.current;
        }
        else
            pop_back_aux();
    }

    void pop_front()
    {
        if( m_start.current != (m_start.last - 1) )
        {
            destroy( m_start.current );
            ++m_start.current;
        }
        else
            pop_front_aux();
    }

    void resize( size_type new_size, const_reference value = value_type() )
    {
     const size_type len = size();
     if( new_size > len )
         insert( m_finish, new_size - len, value );
     else if( new_size < len )
         erase( m_start + new_size, m_finish );
    }

    void clear();

    iterator erase( iterator position );
    iterator erase( iterator first, iterator last );


    void assign( size_type new_size, const_reference value = value_type() );
    void assign( int new_size, const_reference value = value_type() )
        {  assign( static_cast<size_type>( new_size ), value );  }
    void assign( long new_size, const_reference value = value_type() )
        {  assign( static_cast<size_type>( new_size ), value );  }

    template< typename InputIterator >
    void assign( InputIterator first, InputIterator last )
    {
     typedef  typename iterator_traits<InputIterator>::iterator_category  cate;

        if( first == last )
            clear();
        else
            assign_aux( first, last, cate() );
    }


    void insert( iterator position, size_type count, const_reference value )
    {
        if( count > 1 )
            insert_n( position, count, value );
    }
    void insert( iterator position, int count, const_reference value )
        {  insert( position, static_cast<size_type>( count ), value );  }
    void insert( iterator position, long count, const_reference value )
        {  insert( position, static_cast<size_type>( count ), value );  }

    iterator insert( iterator position, const_reference value = value_type() )
    {
        if( position == m_start )
        {
            push_front( value );
            return m_start;
        }
        else if( position == m_finish )
        {
            push_back( value );
            return --end();
        }
        else
            return insert_aux( position, value );
    }

    template< typename InputIterator >
    void insert( iterator position, InputIterator first, InputIterator last,
                 size_type extra_size = 0 )
    {
        if( first != last )
            range_insert( position, first, last,
                          range_length(first, last, extra_size) );
    }

protected:
    //进行初始化的辅助函数
    void fill_init( size_type n, const value_type& value );

    template< typename InputIterator >
    void range_init( InputIterator first, InputIterator last,
                     size_type size, input_iterator_tag )
    {
        alloc_map_and_nodes( size );
        for( ; first != last; ++first )
            push_back( *first );
    }

    template< typename InputIterator >
    void range_init( InputIterator first, InputIterator last,
                     size_type size, random_access_iterator_tag )
    {
        size_type n = last - first;
        alloc_map_and_nodes( max(n, size) );
        try
        {
            init_copy( first, last, m_start );
        }
        catch(...)
        {
            free_map_and_nodes();
            throw;
        }
    }


    //assign、insert、push、pop的辅助函数
    void insert_n( iterator position, size_type extra_size,
                   const_reference value );
    iterator insert_aux( iterator position, const_reference value );

    template< typename InputIterator >
    void range_insert( iterator position,
                       InputIterator first, InputIterator last,
                       size_type extra_size );

    template< typename InputIterator >
    void assign_aux( InputIterator first, InputIterator last,
                     input_iterator_tag );
    template< typename InputIterator >
    void assign_aux( InputIterator first, InputIterator last,
                     random_access_iterator_tag );

    void reserve_map_at_back( size_type add_nodes = 1 )
    {
        if( add_nodes + 1 > (m_map_size - (m_finish.node - m_map)) )
            reallocate_map( add_nodes, false );
    }

    void reserve_map_at_front( size_type add_nodes = 1 )
    {
        if( add_nodes > (m_start.node - m_map) )
            reallocate_map( add_nodes, true );
    }

    iterator reserve_elements_at_front( size_type n )
    {
        size_type space = m_start.current - m_start.first;
        if( n > space )
            new_elements_at_front( n - space );
        return ( m_start - n );
    }

    iterator reserve_elements_at_back( size_type n )
    {
        size_type space = ( m_finish.last - m_finish.current ) - 1;
        if( n > space )
            new_elements_at_back( n - space );
        return ( m_finish + n );
    }

    void new_elements_at_front( size_type n );
    void new_elements_at_back( size_type n );

    void destroy_nodes_at_front( iterator before_start );
    void destroy_nodes_at_back( iterator after_finish );

    void push_back_aux( const_reference value );
    void push_front_aux( const_reference value );
    void pop_back_aux();
    void pop_front_aux();


    //负责分配和回收map与缓冲区空间的函数
    void alloc_map_and_nodes( size_type n );
    void free_map_and_nodes();
    void reallocate_map( size_type add_nodes, bool add_at_front );

    map_pointer alloc_map( size_type n )
    {
        return m_map_alloc.allocate(n);
    }
    void dealloc_map( map_pointer map_ptr, size_type n )
    {
        if( map_ptr )
            m_map_alloc.deallocate( map_ptr, n );
    }

    pointer alloc_node()
    {
        return m_data_alloc.allocate( buffer_size() );
    }
    void dealloc_node( pointer ptr )
    {
        if( ptr )
            m_data_alloc.deallocate( ptr, buffer_size() );
    }

};  //end class

//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
deque<T, Allocator, buf_size>::~deque()
{
    size_type buf = buffer_size();
    for( map_pointer curr = m_start.node + 1; curr < m_finish.node; ++curr )
    {
        destroy( *curr, *curr + buf );
        dealloc_node( *curr );
    }

    if( m_start.node != m_finish.node )  //首尾不在同一个map内
    {
        destroy( m_start.current, m_start.last );
        destroy( m_finish.first, m_finish.current );
        dealloc_node( *(m_start.node) );
        dealloc_node( *(m_finish.node) );
    }
    else  //首尾在同一个map内
    {
        destroy( m_start.current, m_finish.current );
        dealloc_node( *(m_start.node) );
    }

    dealloc_map( m_map, m_map_size );
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
deque<T, Allocator, buf_size>&
deque<T, Allocator, buf_size>::operator=( const self& rhs )
{
    if( this != &rhs )
    {
        const size_type len = size();
        if( len >= rhs.size() )
            erase( copy(rhs.begin(), rhs.end(), m_start), m_finish );
        else
        {
            const_iterator itr = rhs.begin() + len;
            copy( rhs.begin(), itr, m_start );
            insert( m_finish, itr, rhs.end() );
        }
    }
    return *this;
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
void deque<T, Allocator, buf_size>::alloc_map_and_nodes( size_type data_size )
{
    size_type nodes_count = data_size / buffer_size() + 1;  //可能还有余数,所以要加1
    m_map_size = max( init_map_size, nodes_count + 2 );
    m_map = alloc_map( m_map_size );

    map_pointer node_start = m_map + ( m_map_size - nodes_count ) / 2;
    map_pointer node_finish = node_start + nodes_count - 1;
    map_pointer curr;

    try
    {
        for( curr = node_start; curr <= node_finish; ++curr )
            *curr = alloc_node();
    }
    catch(...)
    {
        for( ; node_start < curr; ++node_start )
            dealloc_node( *node_start );
        dealloc_map( m_map, m_map_size );
        throw;
    }

    m_start.set_node( node_start );
    m_finish.set_node( node_finish );
    m_start.current = m_start.first;
    m_finish.current = m_finish.first + data_size % buffer_size();
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
void deque<T, Allocator, buf_size>::reallocate_map( size_type add_nodes,
                                                    bool add_at_front )
{
    size_type old_nodes = m_finish.node - m_start.node + 1;
    size_type new_nodes = old_nodes + add_nodes;

    map_pointer new_start;

    if( m_map_size > 2 * new_nodes )  //map空间足够大
    {
        //在起始位置增加节点则需将当前节点数据后移
        new_start = m_map + (m_map_size - new_nodes) / 2
                    + ( add_at_front ? add_nodes : 0 );
        if( new_start < m_start.node )  //在起始处增加节点的操作
            copy( m_start.node, m_finish.node + 1, new_start );
        else  //在末尾增加节点的操作
            copy_backward( m_start.node, m_finish.node + 1, new_start + old_nodes );
    }
    else
    {
        size_type new_map_size = m_map_size + max( m_map_size, add_nodes ) + 2;
        map_pointer new_map = alloc_map( new_map_size );
        new_start = new_map + (new_map_size - new_nodes) / 2
                    + ( add_at_front ? add_nodes : 0 );
        copy( m_start.node, m_finish.node + 1, new_start );
        dealloc_map( m_map, m_map_size );
        m_map = new_map;
        m_map_size = new_map_size;
    }

    m_start.set_node( new_start );
    m_finish.set_node( new_start + old_nodes - 1 );
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
void deque<T, Allocator, buf_size>::free_map_and_nodes()
{
    for( map_pointer curr = m_start.node; curr <= m_finish.node; ++curr )
        dealloc_node( *curr );
    dealloc_map( m_map, m_map_size );
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
void deque<T, Allocator, buf_size>::fill_init( size_type n, const T& value )
{
    alloc_map_and_nodes( n );
    map_pointer curr;
    size_type buf = buffer_size();
    try
    {
        for( curr = m_start.node; curr < m_finish.node; ++curr )
            init_fill_n( *curr, buf, value );
        init_fill_n( m_finish.first, m_finish.current - m_finish.first, value );
    }
    catch(...)
    {
     for( map_pointer i = m_start.node; i < curr; ++i )
         destroy( *i, *i + buf );
        free_map_and_nodes();
        throw;
    }
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
void deque<T, Allocator, buf_size>::clear()
{
    size_type buf = buffer_size();

    //释放start与finish之间的节点所分配的空间
    for( map_pointer curr = m_start.node + 1; curr < m_finish.node; ++curr )
    {
        destroy( *curr, *curr + buf );
        dealloc_node( *curr );
    }

    if( m_start.node != m_finish.node )
    {
        destroy( m_start.current, m_start.last );
        destroy( m_finish.first, m_finish.current );
        dealloc_node( *(m_finish.node) );
    }
    else
        destroy( m_start.current, m_finish.current );

    m_finish = m_start;
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
void deque<T, Allocator, buf_size>::push_back_aux( const_reference value )
{
    reserve_map_at_back();  //检查是否需要为map重新分配内存空间
    *( m_finish.node + 1 ) = alloc_node();
    try
    {
        construct( m_finish.current, value );
    }
    catch(...)
    {
        dealloc_node( *(m_finish.node + 1) );
        throw;
    }
    m_finish.set_node( m_finish.node + 1 );
    m_finish.current = m_finish.first;
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
void deque<T, Allocator, buf_size>::push_front_aux( const_reference value )
{
    reserve_map_at_front();
    *( m_start.node - 1 ) = alloc_node();
    try
    {
        m_start.set_node( m_start.node - 1 );
        m_start.current = m_start.last - 1;
        construct( m_start.current, value );
    }
    catch(...)
    {
        m_start.set_node( m_start.node - 1 );
        m_start.current = m_start.first;
        dealloc_node( *(m_start.node - 1) );
        throw;
    }
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
void deque<T, Allocator, buf_size>::pop_back_aux()
{
    dealloc_node( m_finish.first );
    m_finish.set_node( m_finish.node - 1 );
    m_finish.current = m_finish.last - 1;
    destroy( m_finish.current );
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
void deque<T, Allocator, buf_size>::pop_front_aux()
{
    destroy( m_start.current );
    dealloc_node( m_start.first );
    m_start.set_node( m_start.node + 1 );
    m_start.current = m_start.first;
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
void deque<T, Allocator, buf_size>::assign( size_type new_size,
                                            const_reference value )
{
    if( new_size < 1 )
    {
        clear();
        return;
    }

    const size_type len = size();

    if( len < new_size )
    {
        fill_n( m_start, len, value );
        insert( m_finish, new_size - len, value );
    }
    else if( len > new_size )
    {
        fill_n( m_start, new_size, value );
        erase( m_start + new_size, m_finish );
    }
    else
        fill_n( m_start, len, value );
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
template< typename InputIterator >
void deque<T, Allocator, buf_size>::assign_aux( InputIterator first,
                                                InputIterator last,
                                                input_iterator_tag )
{
    size_type len = size();
    iterator itr = m_start;

    for( ; (len > 0) && (first != last); --len,++first,++itr )
        *itr = *first;

    if( len > 0 )  //原数据较长
        erase( itr, m_finish );
    else if( (len == 0) && (first != last) )
        insert( m_finish, first, last );
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
template< typename InputIterator >
void deque<T, Allocator, buf_size>::assign_aux( InputIterator first,
                                                InputIterator last,
                                                random_access_iterator_tag )
{
    const size_type len = size();
    const size_type itr_len = last - first;

    if( itr_len > len )
    {
        copy_n( first, len, m_start );
        insert( m_finish, first + len, last );
    }
    else if( itr_len < len )
    {
        copy_n( first, itr_len, m_start );
        erase( m_start + itr_len, m_finish );
    }
    else
        copy( first, last, m_start );
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
typename deque<T, Allocator, buf_size>::iterator
deque<T, Allocator, buf_size>::insert_aux( iterator position,
                                           const_reference value )
{
    difference_type elements_before = position - m_start;
    if( elements_before < (size() / 2) )  //向前面移动
    {
        push_front( front() );
        position = m_start + elements_before;  //迭代器有可能失效,需重新定位
        iterator front1 = m_start;  ++front1;  //指向原来的第一个数据的位置
        iterator front2 = front1;  ++front2;   //指向原来的第二个数据的位置
        copy( front2, position, front1 );       //从第二个数据开始全部前移一位
        --position;
    }
    else
    {
        push_back( back() );
        position = m_start + elements_before;
        iterator back1 = m_finish;  --back1;  //原来的end()
        iterator back2 = back1;  --back2;     //原来的back()
        copy_backward( position, back2, back1 );
    }

    *position = value;
    return position;
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
void deque<T, Allocator, buf_size>::insert_n( iterator position,
                                              size_type extra_size,
                                              const_reference value )
{
    if( position == m_start )
    {
        iterator new_start = reserve_elements_at_front( extra_size );
        try
        {
            init_fill_n( new_start, extra_size, value );
        }
        catch(...)
        {
            destroy_nodes_at_front( new_start );
            throw;
        }
        m_start = new_start;
    }
    else if( position == m_finish )
    {
        iterator new_finish = reserve_elements_at_back( extra_size );
        try
        {
            init_fill_n( m_finish, extra_size, value );
        }
        catch(...)
        {
            destroy_nodes_at_back( new_finish );
            throw;
        }
        m_finish = new_finish;
    }
    else  //处理一般情况下的插入操作
    {
        difference_type elements_before = position - m_start;
        size_type len = size();

        if( elements_before < (len / 2) )  //向前面移动
        {
            iterator new_start = reserve_elements_at_front( extra_size );
            iterator old_start = m_start;
            position = m_start + elements_before;
            try
            {
                //position前面的已构造空间可以放进所有的新数据
                if( elements_before >= difference_type(extra_size) )
                {
                    iterator start_count = m_start + difference_type(extra_size);
                    init_copy( m_start, start_count, new_start );
                    m_start = new_start;
                    copy_n( start_count, position - start_count, old_start );
                    fill( position - extra_size, position, value );
                }
                else  //position前面的已构造空间不能放进所有的新数据
                {
                    //先将[m_start, position)复制进[new_start, m_start),
                    //然后再将value填满[new_start, m_start)的剩余空间
                    init_copy_fill( m_start, position, new_start, m_start, value );
                    m_start = new_start;
                    fill( old_start, position, value );
                }
            }
            catch(...)
            {
                destroy_nodes_at_front( new_start );
                throw;
            }
        }
     else  //向后面移动
     {
            iterator new_finish = reserve_elements_at_back( extra_size );
            iterator old_finish = m_finish;
            difference_type elements_after = difference_type(len) - elements_before;
            position = m_finish - elements_after;
            try
            {
                //position后面的已构造空间可以放进所有的新数据
                if( elements_after >= difference_type(extra_size) )
                {
                    iterator finish_count = m_finish - difference_type(extra_size);
                    init_copy( finish_count, m_finish, m_finish );
                    m_finish = new_finish;
                    copy_backward( position, finish_count, old_finish );
                    fill_n( position, extra_size, value );
                }
                else  //position后面的已构造空间不能放进所有的新数据
                {
                    //先将value添满[m_finish, position + extra_size),
                    //再将[position, m_finish)复制进[position + extra_size, enough)
                    init_fill_copy( m_finish, position + difference_type(extra_size),
                                    value, position, m_finish );
                    m_finish = new_finish;
                    fill( position, old_finish, value );
                }
            }
            catch(...)
            {
                destroy_nodes_at_back( new_finish );
                throw;
            }
        }  //end else ( elements_before >= (len / 2) )
    }  //end else
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
template< typename InputIterator >
void deque<T, Allocator, buf_size>::range_insert( iterator position,
                                                  InputIterator first,
                                                  InputIterator last,
                                                  size_type extra_size )
{
    difference_type elements_before = position - m_start;
    size_type len = size();

    if( elements_before < (len / 2) )  //向前面移动
    {
        iterator new_start = reserve_elements_at_front( extra_size );
        iterator old_start = m_start;
        position = m_start + elements_before;
        try
        {
            //position前面的已构造空间可以放进所有的新数据
            if( elements_before >= difference_type(extra_size) )
            {
                iterator start_count = m_start + difference_type(extra_size);
                init_copy( m_start, start_count, new_start );
                m_start = new_start;
                copy_n( start_count, position - start_count, old_start );
                copy_n( first, extra_size, position - difference_type(extra_size) );
            }
            else  //position前面的已构造空间不能放进所有的新数据
            {
                InputIterator mid = first;
                difference_type i = difference_type(extra_size) - elements_before;
                advance( mid, i );

                //将[m_start, position)和[first, mid)依次复制到[new_start, enough)
                init_copy_copy( m_start, position, first, mid, new_start );
                m_start = new_start;
                copy_n( mid, extra_size - i, old_start );
            }
        }
        catch(...)
        {
            destroy_nodes_at_front( new_start );
            throw;
        }
    }
    else  //向后面移动
    {
        iterator new_finish = reserve_elements_at_back( extra_size );
        iterator old_finish = m_finish;
     difference_type elements_after = difference_type(len) - elements_before;
     position = m_finish - elements_after;
        try
        {
            //position后面的已构造空间可以放进所有的新数据
            if( elements_after >= difference_type(extra_size) )
            {
                iterator finish_count = m_finish - difference_type(extra_size);
                init_copy( finish_count, m_finish, m_finish );
                m_finish = new_finish;
                copy_backward( position, finish_count, old_finish );
                copy_n( first, extra_size, position );
            }
            else  //position后面的已构造空间不能放进所有的新数据
            {
                InputIterator mid = first;
                advance( mid, elements_after );

                //将[mid, last)和[position, m_finish)依次复制进[m_finish, enough)
                init_copy_copy( mid, last, position, m_finish, m_finish );
                m_finish = new_finish;
                copy_n( first, extra_size - elements_after, position );
            }
        }
        catch(...)
        {
            destroy_nodes_at_back( new_finish );
            throw;
        }
    }  //end else
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
typename deque<T, Allocator, buf_size>::iterator
deque<T, Allocator, buf_size>::erase( iterator position )
{
    if( position == m_finish )
        return position;

    iterator next = position;
    ++next;
    difference_type i = position - m_start;

    if( i < (size() / 2) )  //移动前面的数据
    {
        copy_backward( m_start, position, next );
        pop_front();
    }
    else  //移动后面的数据
    {
        copy( next, m_finish, position );
        pop_back();
    }

    return ( m_start + i );
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
typename deque<T, Allocator, buf_size>::iterator
deque<T, Allocator, buf_size>::erase( iterator first, iterator last )
{
    if( first == m_start && last == m_finish )
    {
        clear();
        return m_finish;
    }

    difference_type n = last - first;
    difference_type elements_before = first - m_start;

    if( elements_before < ((size() - n) / 2) )  //移动前面的数据
    {
        copy_backward( m_start, first, last );
        iterator new_start = m_start + n;
        destroy( m_start, new_start );
        for( map_pointer curr = m_start.node; curr < new_start.node; ++curr )
            dealloc_node( *curr );
        m_start = new_start;
    }
    else  //移动后面的数据
    {
        copy( last, m_finish, first );
        iterator new_finish = m_finish - n;
        destroy( new_finish, m_finish );
        for( map_pointer curr = m_finish.node; curr > new_finish.node; --curr )
            dealloc_node( *curr );
        m_finish = new_finish;
    }

    return ( m_start + elements_before );
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
void deque<T, Allocator, buf_size>::new_elements_at_front( size_type n )
{
    size_type buf = buffer_size();
    size_type add_nodes = ( n + buf - 1 ) / buf;
    reserve_map_at_front( add_nodes );

    size_type i;
    try
    {
        for( i = 1; i <= add_nodes; ++i )
            *( m_start.node - i ) = alloc_node();
    }
    catch(...)
    {
        for( size_type j = 1; j < i; ++j )
            dealloc_node( *(m_start.node - j) );
        throw;
    }
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
void deque<T, Allocator, buf_size>::new_elements_at_back( size_type n )
{
    size_type buf = buffer_size();
    size_type add_nodes = ( n + buf - 1 ) / buf;
    reserve_map_at_back( add_nodes );

    size_type i;
    try
    {
        for( i = 1; i <= add_nodes; ++i )
            *( m_finish.node + i ) = alloc_node();
    }
    catch(...)
    {
        for( size_type j = 1; j < i; ++j )
            dealloc_node( *(m_finish.node + j) );
        throw;
    }
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
void deque<T, Allocator, buf_size>::
destroy_nodes_at_front( iterator before_start )
{
    for( map_pointer curr = before_start.node; curr < m_start.node; ++curr )
        dealloc_node( *curr );
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
void deque<T, Allocator, buf_size>::
destroy_nodes_at_back( iterator after_finish )
{
    for( map_pointer curr = after_finish.node; curr > m_finish.node; --curr )
        dealloc_node( *curr );
}

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

template< typename T, typename Allocator, def_size_t buf_size >
inline void swap( deque<T, Allocator, buf_size>& lhs,
                  deque<T, Allocator, buf_size>& rhs )
{
    lhs.swap( rhs );
}

template< typename T, typename Allocator, def_size_t buf_size >
inline bool operator==( const deque<T, Allocator, buf_size>& lhs,
                        const deque<T, Allocator, buf_size>& rhs )
{
    return ( lhs.size() == rhs.size()
             && equal( lhs.begin(), lhs.end(), rhs.begin() ) );
}

template< typename T, typename Allocator, def_size_t buf_size >
inline bool operator!=( const deque<T, Allocator, buf_size>& lhs,
                        const deque<T, Allocator, buf_size>& rhs )
{
    return !( lhs == rhs );
}

template< typename T, typename Allocator, def_size_t buf_size >
inline bool operator<( const deque<T, Allocator, buf_size>& lhs,
                       const deque<T, Allocator, buf_size>& rhs )
{
    if( lhs.begin() == rhs.begin() || lhs.size() > rhs.size() )
        return false;

    return lexicographical_compare( lhs.begin(), lhs.end(),
                                    rhs.begin(), rhs.end() );
}

template< typename T, typename Allocator, def_size_t buf_size >
inline bool operator>( const deque<T, Allocator, buf_size>& lhs,
                       const deque<T, Allocator, buf_size>& rhs )
{
    return ( rhs < lhs );
}

template< typename T, typename Allocator, def_size_t buf_size >
inline bool operator<=( const deque<T, Allocator, buf_size>& lhs,
                        const deque<T, Allocator, buf_size>& rhs )
{
    return !( rhs < lhs );
}

template< typename T, typename Allocator, def_size_t buf_size >
inline bool operator>=( const deque<T, Allocator, buf_size>& lhs,
                        const deque<T, Allocator, buf_size>& rhs )
{
    return !( lhs < rhs );
}

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
__MACRO_CPLUSPLUS_YOUNG_LIBRARY_END_NAMESPACE__
#endif
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

原创粉丝点击