C++ young 程序库——y_slist.hpp

来源:互联网 发布:sql的功能包括 编辑:程序博客网 时间:2024/06/05 14:34

文件位置: young/y_slist.hpp

/*
The young Library
Copyright (c) 2005 by 杨桓

Permission to use, copy, modify, distribute and sell this software for any
purpose is hereby granted without fee, provided that the above copyright
notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation.
The author make no representations about the suitability of this software
for any purpose. It is provided "as is" without express or implied warranty.
*/

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
#ifndef __MACRO_CPLUSPLUS_YOUNG_LIBRARY_SLIST_HEADER_FILE__
#define __MACRO_CPLUSPLUS_YOUNG_LIBRARY_SLIST_HEADER_FILE__
//-----------------------------------------------------------------------------
#include "y_allocator.hpp"
#include "y_construct.hpp"
#include "y_exception.hpp"
#include "algorithm/y_algorithm_base.hpp"
#include "algorithm/y_algorithm_compare.hpp"
//-----------------------------------------------------------------------------
__MACRO_CPLUSPLUS_YOUNG_LIBRARY_BEGIN_NAMESPACE__
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

static const int slist_sort_array = 64;

struct slist_node_base
{
    slist_node_base*  next;
};

template< typename Value >
struct slist_node : public slist_node_base
{
    Value data;
};

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

inline void slist_iterator_increment_n( slist_node_base*& node,
                                        def_size_t n )
{
    for( ; n > 0; --n )
        node = node->next;
}

inline def_size_t slist_size( const slist_node_base* begin,
                              const slist_node_base* end )
{
    def_size_t n = 0;
    while( begin != end )
    {
        begin = begin->next;
        ++n;
    }
    return n;
}

inline slist_node_base* slist_prev( slist_node_base* begin,
                                    const slist_node_base* node )
{
    if( begin != node )
    {
        while( begin && begin->next != node )
            begin = begin->next;
    }
    return begin;
}

inline slist_node_base* slist_make_link( slist_node_base* prev_node,
                                         slist_node_base* new_node )
{
    new_node->next = prev_node->next;
    prev_node->next = new_node;
    return new_node;
}

inline slist_node_base* slist_erase_after_node( slist_node_base* position )
{
    slist_node_base* erase_node = position->next;
    slist_node_base* next_node = erase_node->next;
    position->next = next_node;
    return next_node;
}

inline void slist_splice_after( slist_node_base* position,
                                slist_node_base* before_first,
                                slist_node_base* before_last )
{
    if( position != before_first && position != before_last )
    {
        slist_node_base* first = before_first->next;
        slist_node_base* pos_after = position->next;
        before_first->next = before_last->next;
        position->next = first;
        before_last->next = pos_after;
    }
}

inline slist_node_base* slist_reverse( slist_node_base* first )
{
    slist_node_base* result = first;
    slist_node_base* next;
    first = first->next;
    result->next = NULL_POINTER;

    while( first )
    {
        next = first->next;
        first->next = result;
        result = first;
        first = next;
    }

    return result;
}

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

template< typename T, typename Ref, typename Ptr, typename Alloc >
class slist_iterator;

template< typename T, typename Allocator >
class slist;

template< typename T, typename Alloc >
inline slist_iterator<T, T&, T*, Alloc>
const_iter_cast( const slist_iterator<T, const T&, const T*, Alloc>& citer );

template< typename T, typename Ref, typename Ptr, typename Alloc >
class slist_iterator
{
public:
    typedef  forward_iterator_tag  iterator_category;
    typedef  def_size_t            size_type;
    typedef  def_ptrdiff_t         difference_type;
    typedef  T                     value_type;
    typedef  Ref                   reference;
    typedef  Ptr                   pointer;

    typedef  slist_iterator<T, Ref, Ptr, Alloc>            self;
    typedef  slist_iterator<T, T&, T*, Alloc>              iterator;
    typedef  slist_iterator<T, const T&, const T*, Alloc>  const_iterator;

private:
    typedef  slist_node_base*  base_ptr;
    typedef  slist_node<T>*    node_ptr;

    typedef  typename primal_type<Ref>::contrary_const_ref  Ref_t;
    typedef  typename primal_type<Ptr>::contrary_const_ptr  Ptr_t;

    friend class slist<T, Alloc>;
    friend class slist_iterator<T, Ref_t, Ptr_t, Alloc>;
    friend iterator const_iter_cast <> ( const const_iterator& );


    base_ptr node;

public:
    slist_iterator() : node(NULL_POINTER)  {}
    slist_iterator( base_ptr p ) : node(p)  {}
    slist_iterator( node_ptr p ) : node(p)  {}
    slist_iterator( const iterator& x ) : node(x.node)  {}

    self& operator=( def_nullptr_t n )
    {
        if( n == NULL_POINTER )
            node = NULL_POINTER;
        return *this;
    }

    bool operator!() const  {  return !node;  }

    bool operator==( const self& rhs ) const  {  return node == rhs.node;  }
    bool operator!=( const self& rhs ) const  {  return node != rhs.node;  }

    reference operator*() const
        {  return static_cast<node_ptr>(node)->data;  }
    pointer operator->() const
        {  return &( operator*() );  }

    self& operator++()
        {  node = node->next;  return *this;  }
    self operator++(int)
        {  self old = *this;  node = node->next;  return old;  }
    self& operator+=( size_type n )
        {  slist_iterator_increment_n( node, n );  return *this;  }

    self next()  {  return node->next;  }
};  //end iterator

template< typename T, typename Ref, typename Ptr, typename Alloc >
inline slist_iterator<T, Ref, Ptr, Alloc>
operator+( const slist_iterator<T, Ref, Ptr, Alloc>& lhs, def_size_t n )
{
    slist_iterator<T, Ref, Ptr, Alloc> temp( lhs );
    return ( temp += n );
}

template< typename T, typename Ref, typename Ptr, typename Alloc >
inline slist_iterator<T, Ref, Ptr, Alloc>
operator+( def_size_t n, const slist_iterator<T, Ref, Ptr, Alloc>& rhs )
{
    slist_iterator<T, Ref, Ptr, Alloc> temp( rhs );
    return ( temp += n );
}

template< typename T, typename Alloc >
inline slist_iterator<T, T&, T*, Alloc>
const_iter_cast( const slist_iterator<T, const T&, const T*, Alloc>& citer )
{
    return slist_iterator<T, T&, T*, Alloc>( citer.node );
}

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

template< typename T, typename Allocator = allocator< slist_node<T> > >
class slist
{
public:
    typedef  slist<T, Allocator>  self;
    typedef  Allocator            allocator_type;

    typedef  T                                      value_type;
    typedef  value_type&                            reference;
    typedef  const value_type&                      const_reference;
    typedef  value_type*                            pointer;
    typedef  const value_type*                      const_pointer;
    typedef  def_size_t                             size_type;
    typedef  def_ptrdiff_t                          difference_type;

    typedef  slist_iterator<T, T&, T*, Allocator>              iterator;
    typedef  slist_iterator<T, const T&, const T*, Allocator>  const_iterator;

protected:
    typedef  slist_node_base   base_node_type;
    typedef  slist_node_base*  base_ptr;
    typedef  slist_node<T>     node_type;
    typedef  slist_node<T>*    node_ptr;

    base_node_type  m_header;
    allocator_type  m_alloc;

public:
    slist()  {  init_header();  }

    explicit slist( size_type size )
        {  fill_init( size, value_type() );  }

    slist( size_type size, const_reference value )
        {  fill_init( size, value );  }
    slist( int size, const_reference value )
        {  fill_init( static_cast<size_type>(size), value );  }
    slist( long size, const_reference value )
        {  fill_init( static_cast<size_type>(size), value );  }

    template< typename InputIterator >
    slist( InputIterator first, InputIterator last )
    {
        init_header();
        try
        {
            insert_after( header(), first, last );
        }
        catch(...)
        {
            clear();
            throw;
        }
    }

    slist( const self& rhs )
    {
        init_header();
        try
        {
            insert_after( header(), rhs.begin(), rhs.end() );
        }
        catch(...)
        {
            clear();
            throw;
        }
    }

    self& operator=( const self& rhs )
    {
        if( this != &rhs )
            assign( rhs.begin(), rhs.end() );
        return *this;
    }

    ~slist()  {  clear();  }

    iterator begin()              {  return m_header.next;  }
    iterator end()                {  return (node_ptr)NULL_POINTER;  }
    const_iterator begin() const  {  return m_header.next;  }
    const_iterator end() const    {  return (node_ptr)NULL_POINTER;  }

    reference front()              {  return *begin();  }
    const_reference front() const  {  return *begin();  }

    bool empty() const          {  return ( m_header.next == NULL_POINTER );  }
    size_type max_size() const  {  return size_t_max;  }
    void clear()                {  erase_after( header(), end() );  }

    reference at( size_type index );
    const_reference at( size_type index ) const;

    reference operator[]( size_type index )
    {
        iterator result = begin();
        return *( result += index );
    }
    const_reference operator[]( size_type index ) const
    {
        const_iterator result = begin();
        return *( result += index );
    }

    iterator previous( iterator position )
        {  return slist_prev( &m_header, position.node );  }
    const_iterator previous( const_iterator position ) const
        {  return slist_prev( const_cast<base_node_type*>( &m_header ),
                              position.node );  }

    size_type size() const
    {
        return slist_size( m_header.next, NULL_POINTER );
    }

    void push_front( const_reference value )
    {
        slist_make_link( &m_header, create_node(value) );
    }

    void pop_front()
    {
        base_ptr x = m_header.next;
        m_header.next = x->next;
        destroy_node( static_cast<node_ptr>(x) );
    }

    void swap( self& rhs )
    {
        if( this != &rhs )
        {
            data_swap( m_header, rhs.m_header );
            data_swap( m_alloc, rhs.m_alloc );
        }
    }

    void reverse()
    {
        if( !empty() && m_header.next->next )
            m_header.next = slist_reverse( m_header.next );
    }

    void resize( size_type new_size, const_reference value = value_type() );

    void assign( size_type new_size, const_reference value = value_type() );
    void assign( int new_size, const_reference value = value_type() )
        {  assign( static_cast<size_type>(new_size), value );  }
    void assign( long new_size, const_reference value = value_type() )
        {  assign( static_cast<size_type>(new_size), value );  }
    template< typename InputIterator >
    void assign( InputIterator first, InputIterator last );


    void insert_after( iterator position, size_type count,
                       const_reference value );
    iterator insert_after( iterator position,
                           const_reference value = value_type() )
        {  return slist_make_link( position.node, create_node(value) );  }
    void insert_after( iterator position, int count, const_reference value )
        {  insert_after( position, static_cast<size_type>(count), value );  }
    void insert_after( iterator position, long count, const_reference value )
        {  insert_after( position, static_cast<size_type>(count), value );  }
    template< typename InputIterator >
    void insert_after( iterator position,
                       InputIterator first, InputIterator last );


    void insert( iterator position, size_type count, const_reference value )
        {  insert_after( previous(position), count, value );  }
    void insert( iterator position, int count, const_reference value )
        {  insert( position, static_cast<size_type>(count), value );  }
    void insert( iterator position, long count, const_reference value )
        {  insert( position, static_cast<size_type>(count), value );  }
    iterator insert( iterator position, const_reference value = value_type() )
        {  return insert_after( previous(position), value );  }
    template< typename InputIterator >
    void insert( iterator position, InputIterator first, InputIterator last )
        {  insert_after( previous(position), first, last );  }


    iterator erase_after( iterator position );
    iterator erase_after( iterator before_first, iterator last );


    iterator erase( iterator position )
        {  return erase_after( slist_prev(&m_header, position.node) );  }
    iterator erase( iterator first, iterator last )
        {  return erase_after( slist_prev(&m_header, first.node), last.node );  }


    void splice_after( iterator position, iterator before_first,
                       iterator before_last )
    {
        if( before_first != before_last )
            slist_splice_after( position.node, before_first.node,
                                before_last.node );
    }
    void splice_after( iterator position, iterator prev )
    {
        slist_splice_after( position.node, prev.node, prev.node->next );
    }


    void splice( iterator position, self& rhs )
    {
        if( !rhs.empty() )
            slist_splice_after( slist_prev( &m_header, position.node ),
                                &rhs.m_header,
                                slist_prev( &rhs.m_header, &rhs.m_header ) );
    }
    // [ first, last ) 必须在 rhs 范围之内
    void splice( iterator position, self& rhs, iterator first, iterator last )
    {
        if( first != last )
            slist_splice_after( slist_prev( &m_header, position.node ),
                                slist_prev( &rhs.m_header, first.node ),
                                slist_prev( first.node, last.node ) );
    }
    //new_node 必须在 rhs 范围之内
    void splice( iterator position, self& rhs, iterator new_node )
    {
        if( position != new_node )
            slist_splice_after( slist_prev( &m_header, position.node ),
                                slist_prev( &rhs.m_header, new_node.node ),
                                new_node.node );
    }


    void remove( const_reference value );
    void merge( self& rhs );
    void unique();
    void sort();

    template< typename Predicate >
    void remove_if( Predicate pred );

    template< typename StrictWeakOrdering >
    void merge( self& rhs, StrictWeakOrdering comp );

    template< typename BinaryPredicate >
    void unique( BinaryPredicate bin_pred );

    template< typename StrictWeakOrdering >
    void sort( StrictWeakOrdering comp );

protected:
    void init_header()  {  m_header.next = NULL_POINTER;  }

    iterator header()  {  return &m_header;  }

    node_ptr create_node( const T& x )
    {
        node_ptr ptr = m_alloc.allocate( 1 );
        try
        {
            construct( &(ptr->data), x );
        }
        catch(...)
        {
            m_alloc.deallocate( ptr, 1 );
            throw;
        }
        ptr->next = NULL_POINTER;
        return ptr;
    }

    void destroy_node( node_ptr ptr )
    {
        destroy( &(ptr->data) );
        m_alloc.deallocate( ptr, 1 );
    }

    void fill_init( size_type n, const_reference value )
    {
        init_header();
        try
        {
            insert_after( header(), n, value );
        }
        catch(...)
        {
            clear();
            throw;
        }
    }

};  //end class

//-----------------------------------------------------------------------------

template< typename T, typename Allocator >
typename slist<T, Allocator>::reference
slist<T, Allocator>::at( size_type index )
{
    if( empty() )
        throw_out_of_range( "slist::at()" );

    iterator result = begin();
    iterator finish = end();

    for( ; index > 0; --index,++result )
    {
        if( result == finish )
            throw_out_of_range( "slist::at()" );
    }
    return *result;
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator >
typename slist<T, Allocator>::const_reference
slist<T, Allocator>::at( size_type index ) const
{
    if( empty() )
        throw_out_of_range( "slist::at()" );

    const_iterator result = begin();
    const_iterator finish = end();

    for( ; index > 0; --index,++result )
    {
        if( result == finish )
            throw_out_of_range( "slist::at()" );
    }
    return *result;
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator >
void slist<T, Allocator>::insert_after( iterator position,
                                        size_type count,
                                        const_reference value )
{
    base_ptr pos = position.node;
    for( ; count > 0; --count )
        pos = slist_make_link( pos, create_node(value) );
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator >
template< typename InputIterator >
void slist<T, Allocator>::insert_after( iterator position,
                                        InputIterator first,
                                        InputIterator last )
{
    base_ptr pos = position.node;
    while( first != last )
    {
        pos = slist_make_link( pos, create_node(*first) );
        ++first;
    }
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator >
typename slist<T, Allocator>::iterator
slist<T, Allocator>::erase_after( iterator position )
{
    if( position == end() )
        return position;

    base_ptr erase_node = position.node->next;
    base_ptr next_node = slist_erase_after_node( position.node );
    destroy_node( static_cast<node_ptr>(erase_node) );
    return next_node;
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator >
typename slist<T, Allocator>::iterator
slist<T, Allocator>::erase_after( iterator before_first, iterator last )
{
    base_ptr curr = before_first.node->next;
    base_ptr temp;

    while( curr != last.node )
    {
        temp = curr;
        curr = curr->next;
        destroy_node( static_cast<node_ptr>(temp) );
    }

    before_first.node->next = last.node;
    return last;
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator >
void slist<T, Allocator>::resize( size_type new_size, const_reference value )
{
    base_ptr curr = &m_header;

    while( curr->next && new_size > 0 )
    {
        --new_size;
        curr = curr->next;
    }

    if( new_size == 0 )
        erase_after( curr, end() );
    else
        insert_after( curr, new_size, value );
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator >
void slist<T, Allocator>::assign( size_type new_size, const_reference value )
{
    if( new_size < 1 )
    {
        clear();
        return;
    }

    base_ptr curr = &m_header;

    while( curr->next && new_size > 0 )
    {
        curr = curr->next;
        static_cast<node_ptr>(curr)->data = value;
        --new_size;
    }

    if( curr->next )
        erase_after( iterator(curr), end() );
    else
        insert_after( iterator(curr), new_size, value );
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator >
template< typename InputIterator >
void slist<T, Allocator>::assign( InputIterator first, InputIterator last )
{
    if( first == last )
    {
        clear();
        return;
    }

    base_ptr curr = &m_header;

    while( curr->next && first != last )
    {
        curr = curr->next;
        static_cast<node_ptr>(curr)->data = *first;
        ++first;
    }

    if( curr->next )
        erase_after( iterator(curr), end() );
    else
        insert_after( iterator(curr), first, last );
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator >
void slist<T, Allocator>::remove( const_reference value )
{
    iterator first = header();
    iterator last = end();
    iterator temp;

    while( first != last )
    {
        temp = first;
        ++temp;
        if( *temp == value )
            erase_after( first );
        else
            ++first;
    }
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator >
template< typename Predicate >
void slist<T, Allocator>::remove_if( Predicate pred )
{
    iterator first = header();
    iterator last = end();
    iterator temp;

    while( first != last )
    {
        temp = first;
        ++temp;
        if( pred(*temp) )
            erase_after( first );
        else
            ++first;
    }
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator >
void slist<T, Allocator>::unique()
{
    if( empty() || m_header.next->next == NULL_POINTER )
        return;

    iterator first = begin();
    iterator last = end();
    iterator temp;

    while( first != last )
    {
        temp = first;
        ++temp;
        if( *temp == *first )
            erase_after( first );
        else
            ++first;
    }
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator >
template< typename BinaryPredicate >
void slist<T, Allocator>::unique( BinaryPredicate bin_pred )
{
    if( empty() || m_header.next->next == NULL_POINTER )
        return;

    iterator first = begin();
    iterator last = end();
    iterator temp;

    while( first != last )
    {
        temp = first;
        ++temp;
        if( bin_pred(*temp, *first) )
            erase_after( first );
        else
            ++first;
    }
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator >
void slist<T, Allocator>::merge( self& rhs )
{
    if( rhs.empty() )
        return;

    iterator curr = header();
    iterator next;

    while( curr.node->next && rhs.m_header.next )
    {
        next = curr;
        ++next;
        if( *(rhs.begin()) < *next )
            splice_after( curr, rhs.header(), rhs.begin() );
        ++curr;
    }

    if( rhs.m_header.next )
    {
        curr.node->next = rhs.m_header.next;
        rhs.m_header.next = NULL_POINTER;
    }
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator >
template< typename StrictWeakOrdering >
void slist<T, Allocator>::merge( self& rhs, StrictWeakOrdering comp )
{
    if( rhs.empty() )
        return;

    iterator curr = header();
    iterator next;

    while( curr.node->next && rhs.m_header.next )
    {
        next = curr;
        ++next;
        if( comp( *(rhs.begin()), *next ) )
            splice_after( curr, rhs.header(), rhs.begin() );
        ++curr;
    }

    if( rhs.m_header.next )
    {
        curr.node->next = rhs.m_header.next;
        rhs.m_header.next = NULL_POINTER;
    }
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator >
void slist<T, Allocator>::sort()
{
    if( empty() || m_header.next->next == NULL_POINTER )
        return;

    self carry;
    self result[ slist_sort_array ];
    size_type fill = 0;

    while( !empty() )
    {
        carry.splice_after( carry.header(), header(), begin() );
        size_type i = 0;
        while( i < fill && !result[i].empty() )
        {
            result[i].merge( carry );
            carry.swap( result[i] );
            ++i;
        }
        carry.swap( result[i] );
        if( i == fill )
            ++fill;
    }

    for( size_type j = 1; j < fill; ++j )
        result[j].merge( result[j - 1] );

    swap( result[fill - 1] );
}
//-----------------------------------------------------------------------------

template< typename T, typename Allocator >
template< typename StrictWeakOrdering >
void slist<T, Allocator>::sort( StrictWeakOrdering comp )
{
    if( empty() || m_header.next->next == NULL_POINTER )
        return;

    self carry;
    self result[ slist_sort_array ];
    size_type fill = 0;

    while( !empty() )
    {
        carry.splice_after( carry.header(), header(), begin() );
        size_type i = 0;
        while( i < fill && !result[i].empty() )
        {
            result[i].merge( carry, comp );
            carry.swap( result[i] );
            ++i;
        }
        carry.swap( result[i] );
        if( i == fill )
            ++fill;
    }

    for( size_type j = 1; j < fill; ++j )
        result[j].merge( result[j - 1], comp );

    swap( result[fill - 1] );
}

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

template< typename T, typename Allocator >
inline void swap( slist<T,Allocator>& lhs, slist<T,Allocator>& rhs )
{
    lhs.swap( rhs );
}

template< typename T, typename Allocator >
inline bool operator==( const slist<T, Allocator>& lhs,
                        const slist<T, Allocator>& rhs )
{
    if( lhs.previous( lhs.begin() ) == rhs.previous( rhs.begin() ) )
        return true;

    return matching( lhs.begin(), lhs.end(), rhs.begin(), rhs.end() );
}

template< typename T, typename Allocator >
inline bool operator!=( const slist<T, Allocator>& lhs,
                        const slist<T, Allocator>& rhs )
{
    return !( lhs == rhs );
}

template< typename T, typename Allocator >
inline bool operator<( const slist<T, Allocator>& lhs,
                       const slist<T, Allocator>& rhs )
{
    if( lhs.previous( lhs.begin() ) == rhs.previous( rhs.begin() ) )
        return false;

    return lexicographical_compare( lhs.begin(), lhs.end(),
                                    rhs.begin(), rhs.end() );
}

template< typename T, typename Allocator >
inline bool operator>( const slist<T, Allocator>& lhs,
                       const slist<T, Allocator>& rhs )
{
    return ( rhs < lhs );
}

template< typename T, typename Allocator >
inline bool operator<=( const slist<T, Allocator>& lhs,
                        const slist<T, Allocator>& rhs )
{
    return !( rhs < lhs );
}

template< typename T, typename Allocator >
inline bool operator>=( const slist<T, Allocator>& lhs,
                        const slist<T, Allocator>& rhs )
{
    return !( lhs < rhs );
}

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
__MACRO_CPLUSPLUS_YOUNG_LIBRARY_END_NAMESPACE__
#endif
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

原创粉丝点击