km算法与最佳匹配

来源:互联网 发布:mac版ps字体怎么安装 编辑:程序博客网 时间:2024/05/29 08:59

KM算法

该算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。设顶点Xi的顶标为A[ i ],顶点Yj的顶标为B[ j ],顶点Xi与Yj之间的边权为w[i,j]。在算法执行过程中的任一时刻,对于任一条边(i,j),A[ i ]+B[j]>=w[i,j]始终成立。

  KM算法的正确性基于以下定理:

  若由二分图中所有满足A[ i ]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。

  首先解释下什么是完备匹配,所谓的完备匹配就是在二部图中,X点集中的所有点都有对应的匹配或者是

  Y点集中所有的点都有对应的匹配,则称该匹配为完备匹配。

  这个定理是显然的。因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。所以相等子图的完备匹配一定是二分图的最大权匹配。

  初始时为了使A[ i ]+B[j]>=w[i,j]恒成立,令A[ i ]为所有与顶点Xi关联的边的最大权,B[j]=0。如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。

  我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。这时我们获得了一棵交错树,它的叶子结点全部是X顶点。现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现:

  1)两端都在交错树中的边(i,j),A[ i ]+B[j]的值没有变化。也就是说,它原来属于相等子图,现在仍属于相等子图。

  2)两端都不在交错树中的边(i,j),A[ i ]和B[j]都没有变化。也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。

  3)X端不在交错树中,Y端在交错树中的边(i,j),它的A[ i ]+B[j]的值有所增大。它原来不属于相等子图,现在仍不属于相等子图。

  4)X端在交错树中,Y端不在交错树中的边(i,j),它的A[ i ]+B[j]的值有所减小。也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。

  现在的问题就是求d值了。为了使A[ i ]+B[j]>=w[i,j]始终成立,且至少有一条边进入相等子图,d应该等于:

  Min{A[ i ]+B[j]-w[i,j] | Xi在交错树中,Yi不在交错树中}。

 

 

程序:

function find(x:longint):boolean;var  y:longint;begin  vx[x]:=true;  for y:=1 to n do  if (not vy[y])and(lx[x]+ly[y]=w[x,y]) then      begin        vy[y]:=true;        if (b[y]=0)or find(b[y]) then         begin           b[y]:=x;           exit(true);         end;     end;  exit(false);end; procedure KM;begin  for i:=1 to n do  begin    max:=0;    for j:=1 to n do    if w[i,j]>max then    max:=w[i,j];    lx[i]:=max;  end;  for k:=1 to n do  repeat    fillchar(vx,sizeof(vx),0);    fillchar(vy,sizeof(vy),0);    if find(k) then break;    d:=maxlongint;    for i:=1 to n do    if vx[i] then      for j:=1 to n do      if not vy[j] then        if lx[i]+ly[j]-w[i,j]<d then        d:=lx[i]+ly[j]-w[i,j];    for i:=1 to n do    begin      if vx[i] then dec(lx[i],d);      if vy[i] then inc(ly[i],d);    end;  until false;end;      

原创粉丝点击