Frobenius范数

来源:互联网 发布:电气二次接线软件 编辑:程序博客网 时间:2024/06/04 23:27

Frobenius norm

For p = 2, this is called the Frobenius norm or the Hilbert–Schmidt norm, though the latter term is often reserved for operators on Hilbert space. This norm can be defined in various ways:

\|A\|_F=\sqrt{\sum_{i=1}^m\sum_{j=1}^n |a_{ij}|^2}=\sqrt{\operatorname{trace}(A^{{}^*}A)}=\sqrt{\sum_{i=1}^{\min\{m,\,n\}} \sigma_{i}^2}

where A* denotes the conjugate transpose of Aσi are the singular values of A, and the trace function is used. The Frobenius norm is very similar to the Euclidean norm on Kn and comes from the Frobenius inner product on the space of all matrices.

The Frobenius norm is sub-multiplicative and is very useful for numerical linear algebra. This norm is often easier to compute than induced norms and has the useful property of being invariant under rotations. This property follows easily from the trace definition restricted to real matrices,

\|A\|_F^{2} = \|P^{\top} \cdot B \cdot P\|_F^{2} = \operatorname{trace}\left( \left( P^{\top} \cdot B \cdot P \right)^{\top} \cdot \left( P^{\top} \cdot B \cdot P \right) \right) =  \operatorname{trace}(B^{\top} \cdot B) = \|B\|_F^{2} ,

where we have used the orthogonal nature of P, P^{\top} \cdot P = \mathbf{I} and the cyclic nature of the trace, \operatorname{trace}(XYZ) = \operatorname{trace}(ZXY). More generally the norm is invariant under a unitary transformation for complex matrices.

Max norm

The max norm is the elementwise norm with p = ∞:

 \|A\|_{\text{max}} = \max \{|a_{ij}|\}.

This norm is not sub-multiplicative.

原创粉丝点击