gauss 消元 整理

来源:互联网 发布:企业名录数据库下载 编辑:程序博客网 时间:2024/04/29 15:19





#include<stdio.h>#include<algorithm>#include<iostream>#include<string.h>#include<math.h>using namespace std;const int MAXN=50;int a[MAXN][MAXN];//增广矩阵int x[MAXN];//解集bool free_x[MAXN];//标记是否是不确定的变元/*void Debug(void){    int i, j;    for (i = 0; i < equ; i++)    {        for (j = 0; j < var + 1; j++)        {            cout << a[i][j] << " ";        }        cout << endl;    }    cout << endl;}*/inline int gcd(int a,int b){    int t;    while(b!=0)    {        t=b;        b=a%b;        a=t;    }    return a;}inline int lcm(int a,int b){    return a/gcd(a,b)*b;//先除后乘防溢出}// 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,//-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)//有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.int Gauss(int equ,int var){    int i,j,k;    int max_r;// 当前这列绝对值最大的行.    int col;//当前处理的列    int ta,tb;    int LCM;    int temp;    int free_x_num;    int free_index;    for(int i=0;i<=var;i++)    {        x[i]=0;        free_x[i]=true;    }    //转换为阶梯阵.    col=0; // 当前处理的列    for(k = 0;k < equ && col < var;k++,col++)    {// 枚举当前处理的行.// 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)        max_r=k;        for(i=k+1;i<equ;i++)        {            if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;        }        if(max_r!=k)        {// 与第k行交换.            for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]);        }        if(a[k][col]==0)        {// 说明该col列第k行以下全是0了,则处理当前行的下一列.            k--;            continue;        }        for(i=k+1;i<equ;i++)        {// 枚举要删去的行.            if(a[i][col]!=0)            {                LCM = lcm(abs(a[i][col]),abs(a[k][col]));                ta = LCM/abs(a[i][col]);                tb = LCM/abs(a[k][col]);                if(a[i][col]*a[k][col]<0)tb=-tb;//异号的情况是相加                for(j=col;j<var+1;j++)                {                    a[i][j] = a[i][j]*ta-a[k][j]*tb;                }            }        }    }  //  Debug();    // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).    for (i = k; i < equ; i++)    { // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.        if (a[i][col] != 0) return -1;    }    // 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.    // 且出现的行数即为自由变元的个数.    if (k < var)    {        // 首先,自由变元有var - k个,即不确定的变元至少有var - k个.        for (i = k - 1; i >= 0; i--)        {            // 第i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第equ行.            // 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的.            free_x_num = 0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.            for (j = 0; j < var; j++)            {                if (a[i][j] != 0 && free_x[j]) free_x_num++, free_index = j;            }            if (free_x_num > 1) continue; // 无法求解出确定的变元.            // 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.            temp = a[i][var];            for (j = 0; j < var; j++)            {                if (a[i][j] != 0 && j != free_index) temp -= a[i][j] * x[j];            }            x[free_index] = temp / a[i][free_index]; // 求出该变元.            free_x[free_index] = 0; // 该变元是确定的.        }        return var - k; // 自由变元有var - k个.    }    // 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.    // 计算出Xn-1, Xn-2 ... X0.    for (i = var - 1; i >= 0; i--)    {        temp = a[i][var];        for (j = i + 1; j < var; j++)        {            if (a[i][j] != 0) temp -= a[i][j] * x[j];        }        if (temp % a[i][i] != 0) return -2; // 说明有浮点数解,但无整数解.        x[i] = temp / a[i][i];    }    return 0;}int main(void){    freopen("in.txt", "r", stdin);    freopen("out.txt","w",stdout);    int i, j;    int equ,var;    while (scanf("%d %d", &equ, &var) != EOF)    {        memset(a, 0, sizeof(a));        for (i = 0; i < equ; i++)        {            for (j = 0; j < var + 1; j++)            {                scanf("%d", &a[i][j]);            }        }//        Debug();        int free_num = Gauss(equ,var);        if (free_num == -1) printf("无解!\n");   else if (free_num == -2) printf("有浮点数解,无整数解!\n");        else if (free_num > 0)        {            printf("无穷多解! 自由变元个数为%d\n", free_num);            for (i = 0; i < var; i++)            {                if (free_x[i]) printf("x%d 是不确定的\n", i + 1);                else printf("x%d: %d\n", i + 1, x[i]);            }        }        else        {            for (i = 0; i < var; i++)            {                printf("x%d: %d\n", i + 1, x[i]);            }        }        printf("\n");    }    return 0;}



n*n

#include <iostream>#include <cmath>#include <stdio.h>using namespace std;#define maxn  100#define fabs(x) ((x)>0?(x):-(x))#define eps 1e-10int gauss_cpivot(int n,double a[][maxn], double b[]){int i,j,k,row;double maxp,t;for(k=0;k<n;k++){//挑选最大的a[i][k],记为maxp;for(maxp=0,i=k;i<n;i++){if(fabs(a[i][k])>fabs(maxp))maxp = a[row=i][k];}//如果当前全部为0,即方程有无数解或无解            if(fabs(maxp)<eps)return 0;                        //交换行if(row != k){ for(j=k;j<n;j++)t=a[k][j],a[k][j]=a[row][j],a[row][j]=t;t=b[k],b[k]=b[row],b[row]=t;}//第k行 变成1 其余行消掉for(j=k+1;j<n;j++){a[k][j] /= maxp;for(i=k+1;i<n;i++)a[i][j]-=a[i][k]*a[k][j];}//处理b[i]b[k] /= maxp;for(i=k+1;i<n;i++)b[i]-=b[k]*a[i][k];}//求解上三角矩阵 for(i=n-1;i>=0;i--)for(j=i+1;j<n;j++)b[i]-=a[i][j]*b[j];return 1;}int main(){int i,j,n;double a[maxn][maxn],b[maxn];while(scanf("%d",&n)!=-1){for(i=0;i<n;i++)for(j=0;j<n;j++)scanf("%lf",&a[i][j]);for(i=0;i<n;i++)scanf("%lf",&b[i]);gauss_cpivot(n,a,b);for(i=0;i<n;i++)printf("%.2lf\n",b[i]);}return 0;}





原创粉丝点击