R/BioC序列处理之二:Biostrings序列的基本操作

来源:互联网 发布:淘宝每日好店怎么上 编辑:程序博客网 时间:2024/06/05 23:42
还是先获取随机DNA序列和其他序列对象:
library(Biostrings)rndSeq <- function(dict, n) {    paste(sample(dict, n, replace = T), collapse = "")}set.seed(0)# 用mapply和rndSeq函数获取5条序列(字符串):DNA.raw <- mapply(rndSeq, list(DNA_BASES), rep(20, 5))names(DNA.raw) <- paste("SEQ", 1:5, sep = "-")# DNAString对象,1条序列DNA.str <- DNAString(DNA.raw[1])# DNAStringSet对象,含5条序列DNA.set <- DNAStringSet(DNA.raw)# Views对象DNA.vws <- successiveViews(DNA.str, width = rep(4, 5))

一、获取序列基本信息

包括获取名称(names)、长度(length)、字符个数(nchar)和对象头/尾(head/tail)等信息的函数。
函数的用法简单,但需注意XString类对象的返回结果和其他类型有些差别:
# length函数----------------------length(DNA.raw)
## [1] 5
# 结果为序列的长度length(DNA.str)
## [1] 20
length(DNA.set)
## [1] 5
length(DNA.vws)
## [1] 5
# nchar函数-----------------------nchar(DNA.raw)
## SEQ-1 SEQ-2 SEQ-3 SEQ-4 SEQ-5 ##    20    20    20    20    20
nchar(DNA.str)
## [1] 20
nchar(DNA.set)
## [1] 20 20 20 20 20
nchar(DNA.vws)
## [1] 4 4 4 4 4
# head/tail函数-------------------head(DNA.raw, 2)
##                  SEQ-1                  SEQ-2 ## "TCCGTATTGGAAAGCTCGTC" "TTAGACCACTCCGCATGTAG"
# 结果为序列的前几个碱基head(DNA.str, 2)
##   2-letter "DNAString" instance## seq: TC
head(DNA.set, 2)
##   A DNAStringSet instance of length 2##     width seq                                          names               ## [1]    20 TCCGTATTGGAAAGCTCGTC                         SEQ-1## [2]    20 TTAGACCACTCCGCATGTAG                         SEQ-2
head(DNA.vws, 2)
##   Views on a 20-letter DNAString subject## subject: TCCGTATTGGAAAGCTCGTC## views:##     start end width## [1]     1   4     4 [TCCG]## [2]     5   8     4 [TATT]

二、序列转换

1、获取反向、互补、反向互补序列:

reverse(), complement(), reverseComplement()可以使用string, XString, XXXSet和Views类对象进行操作。下面看看reverse函数的结果:
DNA.raw
##                  SEQ-1                  SEQ-2                  SEQ-3 ## "TCCGTATTGGAAAGCTCGTC" "TTAGACCACTCCGCATGTAG" "CTGTGGTACGGCTCAAACGG" ##                  SEQ-4                  SEQ-5 ## "CTCCCGCCTATCTCCCTTCT" "TCGCCTAGAAAAAGTTTCCT"
reverse(DNA.raw)
##                  SEQ-1                  SEQ-2                  SEQ-3 ## "CTGCTCGAAAGGTTATGCCT" "GATGTACGCCTCACCAGATT" "GGCAAACTCGGCATGGTGTC" ##                  SEQ-4                  SEQ-5 ## "TCTTCCCTCTATCCGCCCTC" "TCCTTTGAAAAAGATCCGCT"
reverse(DNA.str)
##   20-letter "DNAString" instance## seq: CTGCTCGAAAGGTTATGCCT
reverse(DNA.set)
##   A DNAStringSet instance of length 5##     width seq                                          names               ## [1]    20 CTGCTCGAAAGGTTATGCCT                         SEQ-1## [2]    20 GATGTACGCCTCACCAGATT                         SEQ-2## [3]    20 GGCAAACTCGGCATGGTGTC                         SEQ-3## [4]    20 TCTTCCCTCTATCCGCCCTC                         SEQ-4## [5]    20 TCCTTTGAAAAAGATCCGCT                         SEQ-5
reverse(DNA.vws)
##   Views on a 20-letter DNAString subject## subject: CTGCTCGAAAGGTTATGCCT## views:##     start end width## [1]    17  20     4 [GCCT]## [2]    13  16     4 [TTAT]## [3]     9  12     4 [AAGG]## [4]     5   8     4 [TCGA]## [5]     1   4     4 [CTGC]

2、序列翻译:

翻译函数translate()只能使用XString和XXXSet类对象(Biostrings version 2.29.3):
# 错误translate(DNA.raw)
## Error: unable to find an inherited method for function 'translate' for## signature '"character"'
translate(DNA.str)
##   6-letter "AAString" instance## seq: SVLESS
# 错误translate(DNA.set)
##   A AAStringSet instance of length 5##     width seq## [1]     6 SVLESS## [2]     6 LDHSAC## [3]     6 LWYGSN## [4]     6 LPPISL## [5]     6 SPRKSF
# 错误translate(DNA.vws)
## Error: unable to find an inherited method for function 'translate' for## signature '"XStringViews"'

3、DNA/RNA互转:

使用dna2rna, rna2dna或cDNA函数。这些函数对于数据对象有严格的要求:
DNA.str
##   20-letter "DNAString" instance## seq: TCCGTATTGGAAAGCTCGTC
dna2rna(DNA.str)
##   20-letter "RNAString" instance## seq: UCCGUAUUGGAAAGCUCGUC
# 错误dna2rna(DNA.raw)
## Error: dna2rna() only works on DNA input
# 错误cDNA(DNA.str)
## Error: cDNA() only works on RNA input
cDNA(dna2rna(DNA.str))
##   20-letter "DNAString" instance## seq: AGGCATAACCTTTCGAGCAG

4、其他:

R base包的chartr函数已经重载,可以应用于序列对象,但最好避免使用,因为会出现符号检查问题:
chartr("T", "A", DNA.set)
##   A DNAStringSet instance of length 5##     width seq                                          names               ## [1]    20 ACCGAAAAGGAAAGCACGAC                         SEQ-1## [2]    20 AAAGACCACACCGCAAGAAG                         SEQ-2## [3]    20 CAGAGGAACGGCACAAACGG                         SEQ-3## [4]    20 CACCCGCCAAACACCCAACA                         SEQ-4## [5]    20 ACGCCAAGAAAAAGAAACCA                         SEQ-5
# 错误chartr("T", "U", DNA.set)
## Error: key 85 (char 'U') not in lookup table
其他一些R base包的字符串操作函数也可以使用序列对象,但注意返回结果的类型。下面两行代码的返回值都是字符串向量,而不是DNAStringSet对象:
tolower(DNA.set)
##                  SEQ-1                  SEQ-2                  SEQ-3 ## "tccgtattggaaagctcgtc" "ttagaccactccgcatgtag" "ctgtggtacggctcaaacgg" ##                  SEQ-4                  SEQ-5 ## "ctcccgcctatctcccttct" "tcgcctagaaaaagtttcct"
gsub("T", "U", DNA.set)
##                  SEQ-1                  SEQ-2                  SEQ-3 ## "UCCGUAUUGGAAAGCUCGUC" "UUAGACCACUCCGCAUGUAG" "CUGUGGUACGGCUCAAACGG" ##                  SEQ-4                  SEQ-5 ## "CUCCCGCCUAUCUCCCUUCU" "UCGCCUAGAAAAAGUUUCCU"

三、序列截取(sequence subset)

1、使用序列构造函数

Biostrings的XXXSet类和Views类序列构造函数本身就具备序列subset的功能,Views类对象可以通过类型转换获得XXXSet类对象。具体使用方法请参看上一篇文章

2、subseq函数

subseq函数可以用于序列截取,也可以对选定序列进行修改:
DNAstr <- DNAString(rndSeq(DNA_BASES, 50))(subseq(DNAstr, start = 20, end = 30))
##   11-letter "DNAString" instance## seq: CGTCCATCGAA
# 上面语句的subseq函数仅仅是截取了序列,没有改变原序列DNAstr
##   50-letter "DNAString" instance## seq: GGCCTGAACTGTGCCAAGACGTCCATCGAAGGAAGTGGGTGGGACGCAGA
# 下面语句的subseq函数改变了原序列subseq(DNAstr, start = 20, end = 30) <- DNAString("NNN")DNAstr
##   42-letter "DNAString" instance## seq: GGCCTGAACTGTGCCAAGANNNGGAAGTGGGTGGGACGCAGA

3、特殊序列查找和截取

回文(palindrome)序列相关的函数,有:
findPalindromes(subject, min.armlength = 4, max.looplength = 1, min.looplength = 0,     max.mismatch = 0)palindromeArmLength(x, max.mismatch = 0, ...)palindromeLeftArm(x, max.mismatch = 0, ...)palindromeRightArm(x, max.mismatch = 0, ...)findComplementedPalindromes(subject, min.armlength = 4, max.looplength = 1,     min.looplength = 0, max.mismatch = 0)complementedPalindromeArmLength(x, max.mismatch = 0, ...)complementedPalindromeLeftArm(x, max.mismatch = 0, ...)complementedPalindromeRightArm(x, max.mismatch = 0, ...)
有应用需求的自己去看看函数说明吧。

四、字符或寡核苷酸组合的统计

1、letterFrequency函数

这个函数用于统计指定字符的频率或比例:
letterFrequency(DNA.set, DNA_BASES)
##      A  C G T## [1,] 4  5 5 6## [2,] 5  6 4 5## [3,] 4  5 7 4## [4,] 1 11 1 7## [5,] 6  5 3 6
letterFrequency(DNA.set, DNA_ALPHABET)
##      A  C G T M R W S Y K V H D B N - +## [1,] 4  5 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0## [2,] 5  6 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0## [3,] 4  5 7 4 0 0 0 0 0 0 0 0 0 0 0 0 0## [4,] 1 11 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0## [5,] 6  5 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0
letterFrequency(DNA.set, DNA_BASES, as.prob = TRUE)
##         A    C    G    T## [1,] 0.20 0.25 0.25 0.30## [2,] 0.25 0.30 0.20 0.25## [3,] 0.20 0.25 0.35 0.20## [4,] 0.05 0.55 0.05 0.35## [5,] 0.30 0.25 0.15 0.30
# 注意下面这种用法:letterFrequency(DNA.set, "GC", as.prob = TRUE)
##      G|C## [1,] 0.5## [2,] 0.5## [3,] 0.6## [4,] 0.6## [5,] 0.4

2、letterFrequencyInSlidingView函数

该函数按设置的窗口长度(view.width)一个个碱基滑动并统计字符频率或比例:
letterFrequencyInSlidingView(DNA.set[[1]], view.width = 16, letter = DNA_BASES)
##      A C G T## [1,] 4 3 4 5## [2,] 4 4 4 4## [3,] 4 3 5 4## [4,] 4 2 5 5## [5,] 4 3 4 5
letterFrequencyInSlidingView(DNA.set[[1]], 16, "GC", as.prob = TRUE)
##         G|C## [1,] 0.4375## [2,] 0.5000## [3,] 0.5000## [4,] 0.4375## [5,] 0.4375

3、alphabetFrequency函数

作用与letterFrequency函数类似,但按ALPHABET中的所有因子进行统计。baseOnly设置为TRUE可以对ALPHABET进行限制:
alphabetFrequency(DNA.set)
##      A  C G T M R W S Y K V H D B N - +## [1,] 4  5 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0## [2,] 5  6 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0## [3,] 4  5 7 4 0 0 0 0 0 0 0 0 0 0 0 0 0## [4,] 1 11 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0## [5,] 6  5 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0
alphabetFrequency(DNA.set, as.prob = TRUE, baseOnly = TRUE)
##         A    C    G    T other## [1,] 0.20 0.25 0.25 0.30     0## [2,] 0.25 0.30 0.20 0.25     0## [3,] 0.20 0.25 0.35 0.20     0## [4,] 0.05 0.55 0.05 0.35     0## [5,] 0.30 0.25 0.15 0.30     0

4、寡核苷酸统计:

有以下函数,分别统计2核苷酸组合、3核苷酸组合和寡核苷酸组合:
dinucleotideFrequencytrinucleotideFrequencyoligonucleotideFrequency

五、杂项函数

包括使用序列对象进行运算的一些函数(和符号):
# 反转对象元素的顺序,不是反转序列!rev(DNA.set)
##   A DNAStringSet instance of length 5##     width seq                                          names               ## [1]    20 TCGCCTAGAAAAAGTTTCCT                         SEQ-5## [2]    20 CTCCCGCCTATCTCCCTTCT                         SEQ-4## [3]    20 CTGTGGTACGGCTCAAACGG                         SEQ-3## [4]    20 TTAGACCACTCCGCATGTAG                         SEQ-2## [5]    20 TCCGTATTGGAAAGCTCGTC                         SEQ-1
# 判断两个对象是否相同DNA.set[[1]] == DNA.set[[2]]
## [1] FALSE
# 判断对象是否包含在另外一个对象的元素中DNA.str %in% DNA.set
## [1] TRUE
Biostrings在2.0版后还添加了append函数,可以把几个序列集合合并,还可以使用c函数进行合并:
append(DNA.set, DNAStringSet(DNA.str))
##   A DNAStringSet instance of length 6##     width seq                                          names               ## [1]    20 TCCGTATTGGAAAGCTCGTC                         SEQ-1## [2]    20 TTAGACCACTCCGCATGTAG                         SEQ-2## [3]    20 CTGTGGTACGGCTCAAACGG                         SEQ-3## [4]    20 CTCCCGCCTATCTCCCTTCT                         SEQ-4## [5]    20 TCGCCTAGAAAAAGTTTCCT                         SEQ-5## [6]    20 TCCGTATTGGAAAGCTCGTC
c(DNA.set, DNAStringSet(DNA.str))
##   A DNAStringSet instance of length 6##     width seq                                          names               ## [1]    20 TCCGTATTGGAAAGCTCGTC                         SEQ-1## [2]    20 TTAGACCACTCCGCATGTAG                         SEQ-2## [3]    20 CTGTGGTACGGCTCAAACGG                         SEQ-3## [4]    20 CTCCCGCCTATCTCCCTTCT                         SEQ-4## [5]    20 TCGCCTAGAAAAAGTTTCCT                         SEQ-5## [6]    20 TCCGTATTGGAAAGCTCGTC
除以上列出的例子外还有duplicated, unique, sort, order, split, relist等。随着Biostrings的完善,可能会添加更多的函数,使序列的运算更符合R语言的运算习惯。
注:本文R语言的代码加亮显示由RStudio/knitr产生,使用R脚本对其产生的HTML代码进行解析后发布到本博客。
0 0
原创粉丝点击