Java中System.loadLibrary() 的执行过程

来源:互联网 发布:红外触摸算法 编辑:程序博客网 时间:2024/06/04 23:22
androidloadLibrary

目录[-]

  • 系统的library path
  • Native 层load library的过程
  • System.loadLibrary()是我们在使用Java的JNI机制时,会用到的一个非常重要的函数,它的作用即是把实现了我们在Java code中声明的native方法的那个libraryload进来,或者load其他什么动态连接库。

    算是处于好奇吧,我们可以看一下这个方法它的实现,即执行流程。(下面分析的那些code,来自于android 4.2.2 aosp版。)先看一下这个方法的code(在libcore/luni/src/main/java/java/lang/System.java这个文件中):

        /**     * Loads and links the library with the specified name. The mapping of the     * specified library name to the full path for loading the library is     * implementation-dependent.     *     * @param libName     *            the name of the library to load.     * @throws UnsatisfiedLinkError     *             if the library could not be loaded.     */    public static void loadLibrary(String libName) {        Runtime.getRuntime().loadLibrary(libName, VMStack.getCallingClassLoader());    } 

    由上面的那段code,可以看到,它的实现非常简单,就只是先调用VMStack.getCallingClassLoader()获取到ClassLoader,然后再把实际要做的事情委托给了Runtime来做而已。接下来我们再看一下Runtime.loadLibrary()的实现(在libcore/luni/src/main/java/java/lang/Runtime.java这个文件中):

        /*     * Loads and links a library without security checks.     */    void loadLibrary(String libraryName, ClassLoader loader) {        if (loader != null) {            String filename = loader.findLibrary(libraryName);            if (filename == null) {                throw new UnsatisfiedLinkError("Couldn't load " + libraryName                                               + " from loader " + loader                                               + ": findLibrary returned null");            }            String error = nativeLoad(filename, loader);            if (error != null) {                throw new UnsatisfiedLinkError(error);            }            return;        }        String filename = System.mapLibraryName(libraryName);        List<String> candidates = new ArrayList<String>();        String lastError = null;        for (String directory : mLibPaths) {            String candidate = directory + filename;            candidates.add(candidate);            if (new File(candidate).exists()) {                String error = nativeLoad(candidate, loader);                if (error == null) {                    return; // We successfully loaded the library. Job done.                }                lastError = error;            }        }        if (lastError != null) {            throw new UnsatisfiedLinkError(lastError);        }        throw new UnsatisfiedLinkError("Library " + libraryName + " not found; tried " + candidates);    }

    由上面的那段code,我们看到,loadLibrary()可以被看作是一个2步走的过程

    1. 获取到library path。对于这一点,上面的那个函数,依据于所传递的ClassLoader的不同,会有两种不同的方法。如果ClassLoader非空,则会利用ClassLoader的findLibrary()方法来获取library的path。而如果ClassLoader为空,则会首先依据传递进来的library name,获取到library file的name,比如传递“hello”进来,它的library file name,经过System.mapLibraryName(libraryName)将会是“libhello.so”;然后再在一个pathlist(即上面那段code中的mLibPaths)中查找到这个library file,并最终确定library 的path。
    2. 调用nativeLoad()这个native方法来load library

    这段code,又牵出几个问题,首先,可用的library path都是哪些,这实际上也决定了,我们的so文件放在哪些folder下,才可以被真正load起来?其次,在native层load library的过程,又实际做了什么事情?下面会对这两个问题,一一的作出解答。

    系统的library path

    我们由简单到复杂的来看这个问题。先来看一下,在传入的ClassLoader为空的情况(尽管我们知道,在System.loadLibrary()这个case下不会发生),前面Runtime.loadLibrary()的实现中那个mLibPaths的初始化的过程,在Runtime的构造函数中,如下:

        /**     * Prevent this class from being instantiated.     */    private Runtime(){        String pathList = System.getProperty("java.library.path", ".");        String pathSep = System.getProperty("path.separator", ":");        String fileSep = System.getProperty("file.separator", "/");        mLibPaths = pathList.split(pathSep);        // Add a '/' to the end so we don't have to do the property lookup        // and concatenation later.        for (int i = 0; i < mLibPaths.length; i++) {            if (!mLibPaths[i].endsWith(fileSep)) {                mLibPaths[i] += fileSep;            }        }    }

    可以看到,那个library path list实际上读取自一个system property。那在android系统中,这个system property的实际内容又是什么呢?dump这些内容出来,就像下面这样:

    05-11 07:51:40.974: V/QRCodeActivity(11081): pathList = /vendor/lib:/system/lib05-11 07:51:40.974: V/QRCodeActivity(11081): pathSep = :05-11 07:51:40.974: V/QRCodeActivity(11081): fileSep = /


    然后是传入的ClassLoader非空的情况,ClassLoaderfindLibrary()方法的执行过程。首先看一下它的实现(在libcore/luni/src/main/java/java/lang/ClassLoader.java这个文件中)

        /**     * Returns the absolute path of the native library with the specified name,     * or {@code null}. If this method returns {@code null} then the virtual     * machine searches the directories specified by the system property     * "java.library.path".     * <p>     * This implementation always returns {@code null}.     * </p>     *     * @param libName     *            the name of the library to find.     * @return the absolute path of the library.     */    protected String findLibrary(String libName) {        return null;    }

    竟然是一个空函数。那系统中实际运行的ClassLoader就是这个吗?我们可以做一个小小的实验,打印系统中实际运行的ClassLoader的String

            ClassLoader classLoader = getClassLoader();        Log.v(TAG, "classLoader = " + classLoader.toString());
    在Galaxy Nexus上执行的结果如下:

    05-11 08:18:57.857: V/QRCodeActivity(11556): classLoader = dalvik.system.PathClassLoader[dexPath=/data/app/com.qrcode.qrcode-1.apk,libraryPath=/data/app-lib/com.qrcode.qrcode-1]
    看到了吧,android系统中的 ClassLoader真正的实现 在dalvik的dalvik.system.PathClassLoader。打开libcore/dalvik/src/main/java/dalvik/system/PathClassLoader.java来看PathClassLoader这个class 的实现,可以看到,就只是简单的继承 BaseDexClassLoader而已,没有任何实际的内容。接下来我们就来看一下 BaseDexClassLoader中那个 findLibrary() 真正的实现( 在libcore/dalvik/src/main/java/dalvik/system/BaseDexClassLoader.java这个文件中 ):
        @Override    public String findLibrary(String name) {        return pathList.findLibrary(name);    }

    这个方法看上去倒挺简单,不用多做解释。然后来看那个pathList的初始化的过程,在BaseDexClassLoader的构造函数里

        /**     * Constructs an instance.     *     * @param dexPath the list of jar/apk files containing classes and     * resources, delimited by {@code File.pathSeparator}, which     * defaults to {@code ":"} on Android     * @param optimizedDirectory directory where optimized dex files     * should be written; may be {@code null}     * @param libraryPath the list of directories containing native     * libraries, delimited by {@code File.pathSeparator}; may be     * {@code null}     * @param parent the parent class loader     */    public BaseDexClassLoader(String dexPath, File optimizedDirectory,            String libraryPath, ClassLoader parent) {        super(parent);        this.originalPath = dexPath;        this.originalLibraryPath = libraryPath;        this.pathList =            new DexPathList(this, dexPath, libraryPath, optimizedDirectory);    }

    BaseDexClassLoader的构造函数也不用多做解释吧。然后是DexPathList的构造函数:

        /**     * Constructs an instance.     *     * @param definingContext the context in which any as-yet unresolved     * classes should be defined     * @param dexPath list of dex/resource path elements, separated by     * {@code File.pathSeparator}     * @param libraryPath list of native library directory path elements,     * separated by {@code File.pathSeparator}     * @param optimizedDirectory directory where optimized {@code .dex} files     * should be found and written to, or {@code null} to use the default     * system directory for same     */    public DexPathList(ClassLoader definingContext, String dexPath,            String libraryPath, File optimizedDirectory) {        if (definingContext == null) {            throw new NullPointerException("definingContext == null");        }        if (dexPath == null) {            throw new NullPointerException("dexPath == null");        }        if (optimizedDirectory != null) {            if (!optimizedDirectory.exists())  {                throw new IllegalArgumentException(                        "optimizedDirectory doesn't exist: "                        + optimizedDirectory);            }            if (!(optimizedDirectory.canRead()                            && optimizedDirectory.canWrite())) {                throw new IllegalArgumentException(                        "optimizedDirectory not readable/writable: "                        + optimizedDirectory);            }        }        this.definingContext = definingContext;        this.dexElements =            makeDexElements(splitDexPath(dexPath), optimizedDirectory);        this.nativeLibraryDirectories = splitLibraryPath(libraryPath);    }

    关于我们的library path的问题,可以只关注最后的那个splitLibraryPath(),这个地方,实际上即是把传进来的libraryPath 又丢给splitLibraryPath来获取library path 的list可以看一下DexPathList.splitLibraryPath()的实现:

        /**     * Splits the given library directory path string into elements     * using the path separator ({@code File.pathSeparator}, which     * defaults to {@code ":"} on Android, appending on the elements     * from the system library path, and pruning out any elements that     * do not refer to existing and readable directories.     */    private static File[] splitLibraryPath(String path) {        /*         * Native libraries may exist in both the system and         * application library paths, and we use this search order:         *         *   1. this class loader's library path for application         *      libraries         *   2. the VM's library path from the system         *      property for system libraries         *         * This order was reversed prior to Gingerbread; see http://b/2933456.         */        ArrayList<File> result = splitPaths(                path, System.getProperty("java.library.path", "."), true);        return result.toArray(new File[result.size()]);    }

    这个地方,是在用两个部分的library path list来由splitPaths构造最终的那个path list,一个部分是,传进来的library path,另外一个部分是,像我们前面看到的那个,是system property。然后再来看一下DexPathList.splitPaths()的实现:

        /**     * Splits the given path strings into file elements using the path     * separator, combining the results and filtering out elements     * that don't exist, aren't readable, or aren't either a regular     * file or a directory (as specified). Either string may be empty     * or {@code null}, in which case it is ignored. If both strings     * are empty or {@code null}, or all elements get pruned out, then     * this returns a zero-element list.     */    private static ArrayList<File> splitPaths(String path1, String path2,            boolean wantDirectories) {        ArrayList<File> result = new ArrayList<File>();        splitAndAdd(path1, wantDirectories, result);        splitAndAdd(path2, wantDirectories, result);        return result;    }

    总结一下,ClassLoader的那个findLibrary()实际上会在两个部分的folder中去寻找System.loadLibrary()要load的那个library,一个部分是,构造ClassLoader时,传进来的那个library path,即是app folder,另外一个部分是system property。在android系统中,查找要load的library,实际上会在如下3个folder中进行:

    1. /vendor/lib
    2. /system/lib
    3. /data/app-lib/com.qrcode.qrcode-1

    上面第3个item只是一个例子,每一个app,它的那个app library path的最后一个部分都会是特定于那个app的。至于说,构造BaseDexClassLoader时的那个libraryPath 到底是怎么来的,那可能就会牵扯到android本身更复杂的一些过程了,在此不再做更详细的说明。

    Native 层load library的过程

    然后来看一下native层,把so文件load起的过程,先来一下nativeLoad()这个函数的实现(在JellyBean/dalvik/vm/native/java_lang_Runtime.cpp这个文件中):

    /* * static String nativeLoad(String filename, ClassLoader loader) * * Load the specified full path as a dynamic library filled with * JNI-compatible methods. Returns null on success, or a failure * message on failure. */static void Dalvik_java_lang_Runtime_nativeLoad(const u4* args,    JValue* pResult){    StringObject* fileNameObj = (StringObject*) args[0];    Object* classLoader = (Object*) args[1];    char* fileName = NULL;    StringObject* result = NULL;    char* reason = NULL;    bool success;    assert(fileNameObj != NULL);    fileName = dvmCreateCstrFromString(fileNameObj);    success = dvmLoadNativeCode(fileName, classLoader, &reason);    if (!success) {        const char* msg = (reason != NULL) ? reason : "unknown failure";        result = dvmCreateStringFromCstr(msg);        dvmReleaseTrackedAlloc((Object*) result, NULL);    }    free(reason);    free(fileName);    RETURN_PTR(result);}

    可以看到,nativeLoad()实际上只是完成了两件事情,第一,是调用dvmCreateCstrFromString()将Java 的library path String 转换到native的String,然后将这个path传给dvmLoadNativeCode()做load,dvmLoadNativeCode()这个函数的实现在dalvik/vm/Native.cpp中,如下:

    /* * Load native code from the specified absolute pathname.  Per the spec, * if we've already loaded a library with the specified pathname, we * return without doing anything. * * TODO? for better results we should absolutify the pathname.  For fully * correct results we should stat to get the inode and compare that.  The * existing implementation is fine so long as everybody is using * System.loadLibrary. * * The library will be associated with the specified class loader.  The JNI * spec says we can't load the same library into more than one class loader. * * Returns "true" on success. On failure, sets *detail to a * human-readable description of the error or NULL if no detail is * available; ownership of the string is transferred to the caller. */bool dvmLoadNativeCode(const char* pathName, Object* classLoader,        char** detail){    SharedLib* pEntry;    void* handle;    bool verbose;    /* reduce noise by not chattering about system libraries */    verbose = !!strncmp(pathName, "/system", sizeof("/system")-1);    verbose = verbose && !!strncmp(pathName, "/vendor", sizeof("/vendor")-1);    if (verbose)        ALOGD("Trying to load lib %s %p", pathName, classLoader);    *detail = NULL;    /*     * See if we've already loaded it.  If we have, and the class loader     * matches, return successfully without doing anything.     */    pEntry = findSharedLibEntry(pathName);    if (pEntry != NULL) {        if (pEntry->classLoader != classLoader) {            ALOGW("Shared lib '%s' already opened by CL %p; can't open in %p",                pathName, pEntry->classLoader, classLoader);            return false;        }        if (verbose) {            ALOGD("Shared lib '%s' already loaded in same CL %p",                pathName, classLoader);        }        if (!checkOnLoadResult(pEntry))            return false;        return true;    }    /*     * Open the shared library.  Because we're using a full path, the system     * doesn't have to search through LD_LIBRARY_PATH.  (It may do so to     * resolve this library's dependencies though.)     *     * Failures here are expected when java.library.path has several entries     * and we have to hunt for the lib.     *     * The current version of the dynamic linker prints detailed information     * about dlopen() failures.  Some things to check if the message is     * cryptic:     *   - make sure the library exists on the device     *   - verify that the right path is being opened (the debug log message     *     above can help with that)     *   - check to see if the library is valid (e.g. not zero bytes long)     *   - check config/prelink-linux-arm.map to ensure that the library     *     is listed and is not being overrun by the previous entry (if     *     loading suddenly stops working on a prelinked library, this is     *     a good one to check)     *   - write a trivial app that calls sleep() then dlopen(), attach     *     to it with "strace -p <pid>" while it sleeps, and watch for     *     attempts to open nonexistent dependent shared libs     *     * This can execute slowly for a large library on a busy system, so we     * want to switch from RUNNING to VMWAIT while it executes.  This allows     * the GC to ignore us.     */    Thread* self = dvmThreadSelf();    ThreadStatus oldStatus = dvmChangeStatus(self, THREAD_VMWAIT);    handle = dlopen(pathName, RTLD_LAZY);    dvmChangeStatus(self, oldStatus);    if (handle == NULL) {        *detail = strdup(dlerror());        ALOGE("dlopen(\"%s\") failed: %s", pathName, *detail);        return false;    }    /* create a new entry */    SharedLib* pNewEntry;    pNewEntry = (SharedLib*) calloc(1, sizeof(SharedLib));    pNewEntry->pathName = strdup(pathName);    pNewEntry->handle = handle;    pNewEntry->classLoader = classLoader;    dvmInitMutex(&pNewEntry->onLoadLock);    pthread_cond_init(&pNewEntry->onLoadCond, NULL);    pNewEntry->onLoadThreadId = self->threadId;    /* try to add it to the list */    SharedLib* pActualEntry = addSharedLibEntry(pNewEntry);    if (pNewEntry != pActualEntry) {        ALOGI("WOW: we lost a race to add a shared lib (%s CL=%p)",            pathName, classLoader);        freeSharedLibEntry(pNewEntry);        return checkOnLoadResult(pActualEntry);    } else {        if (verbose)            ALOGD("Added shared lib %s %p", pathName, classLoader);        bool result = true;        void* vonLoad;        int version;        vonLoad = dlsym(handle, "JNI_OnLoad");        if (vonLoad == NULL) {            ALOGD("No JNI_OnLoad found in %s %p, skipping init",                pathName, classLoader);        } else {            /*             * Call JNI_OnLoad.  We have to override the current class             * loader, which will always be "null" since the stuff at the             * top of the stack is around Runtime.loadLibrary().  (See             * the comments in the JNI FindClass function.)             */            OnLoadFunc func = (OnLoadFunc)vonLoad;            Object* prevOverride = self->classLoaderOverride;            self->classLoaderOverride = classLoader;            oldStatus = dvmChangeStatus(self, THREAD_NATIVE);            if (gDvm.verboseJni) {                ALOGI("[Calling JNI_OnLoad for \"%s\"]", pathName);            }            version = (*func)(gDvmJni.jniVm, NULL);            dvmChangeStatus(self, oldStatus);            self->classLoaderOverride = prevOverride;            if (version != JNI_VERSION_1_2 && version != JNI_VERSION_1_4 &&                version != JNI_VERSION_1_6)            {                ALOGW("JNI_OnLoad returned bad version (%d) in %s %p",                    version, pathName, classLoader);                /*                 * It's unwise to call dlclose() here, but we can mark it                 * as bad and ensure that future load attempts will fail.                 *                 * We don't know how far JNI_OnLoad got, so there could                 * be some partially-initialized stuff accessible through                 * newly-registered native method calls.  We could try to                 * unregister them, but that doesn't seem worthwhile.                 */                result = false;            } else {                if (gDvm.verboseJni) {                    ALOGI("[Returned from JNI_OnLoad for \"%s\"]", pathName);                }            }        }        if (result)            pNewEntry->onLoadResult = kOnLoadOkay;        else            pNewEntry->onLoadResult = kOnLoadFailed;        pNewEntry->onLoadThreadId = 0;        /*         * Broadcast a wakeup to anybody sleeping on the condition variable.         */        dvmLockMutex(&pNewEntry->onLoadLock);        pthread_cond_broadcast(&pNewEntry->onLoadCond);        dvmUnlockMutex(&pNewEntry->onLoadLock);        return result;    }}

    哇塞,dvmLoadNativeCode()这个函数还真的是有点复杂,那就挑那些跟我们的JNI比较紧密相关的逻辑来看吧。可以认为这个函数做了下面的这样一些事情:

    1. 调用dlopen()打开一个so文件,创建一个handle。
    2. 调用dlsym()函数,查找到so文件中的JNI_OnLoad()这个函数的函数指针。
    3. 执行上一步找到的那个JNI_OnLoad()函数。

    至此,大体可以结束System.loadLibrary()的执行过程的分析。

    分享到: 6
    声明:OSCHINA 博客文章版权属于作者,受法律保护。未经作者同意不得转载。

    评论

    • {{ commentjson.userName }}
      楼:({{commentjson.appTitle}})手机 Android iPhone Windows Phone微信 发表于 删除 回复此评论
    • 1
    0 0
    原创粉丝点击