线程的定义及状态

来源:互联网 发布:淘宝卖家发短信的软件 编辑:程序博客网 时间:2024/05/16 18:15

一,线程的基本概念、线程的基本状态及状态之间的关系?

1,线程定义:

有时被称为轻量级进程(Lightweight Process,LWP),是程序执行流的最小单元。一个标准的线程由线程ID,当前指令指针(PC),寄存器集合和堆栈组成。线程是进程中的一个实体,是被系统独立调度和分派的基本单位,线程自己不拥有系统资源,只拥有一点儿在运行中必不可少的资源,但它可与同属一个进程的其它线程共享进程所拥有的全部资源。一个线程可以创建和撤消另一个线程,同一进程中的多个线程之间可以并发执行。

or

    概念:线程是进程中执行运算的最小单位,是进程中的一个实体,是被系统独立调度和分派的基本单位,线程自己不拥有系统资源,只拥有一点在运行中必不可少的资源,但它可与同属一个进程的其它线程共享进程所拥有的全部资源。一个线程可以创建和撤消另一个线程,同一进程中的多个线程之间可以并发执行。

    好处 :(1)易于调度。

               (2)提高并发性。通过线程可方便有效地实现并发性。进程可创建多个线程来执行同一程序的不同部分。

               (3)开销少。创建线程比创建进程要快,所需开销很少。。

               (4)利于充分发挥多处理器的功能。通过创建多线程进程,每个线程在一个处理器上运行,从而实现应用程序的并发性,使每个处理器都得到充分运行。


运行running
等待waiting
转换transition
终止terminated
初始化initialized
运行:不用解释了,就是线程获得了CPU的控制权,正在执行计算。
挂起:一般是指被挂起,因为同一时刻,需要“同步”运行的线程不止他一个,所以基于时间片轮转的原则,他在独占了一段时间 的CPU后,被挂起,线程环境被压栈。
睡眠:一般是指主动挂起,这种情况在WINDOWS平台不存在。
阻塞:与挂起和睡眠类似,都是失去CPU的控制权。与挂起更相像,也是被挂起的。不同之处在于,被挂起的线程没有额外的表示, 而被阻塞的线程会被记录下来,当等待的因素就绪后,线程会转为就绪状态。例如你在线程中调用一些类似WAITFORSINGLE OBJECT的系统服务函数,会引起线程控制权的一次裁决,从而挂起本线程,造成本线程的阻塞。挂起、睡眠、阻塞看起来 差不多,但其实本质上还是有以上所述的区别的。
就绪:顾名思义,就是指他准备好了,一旦轮到他,他就可以转为运行状态。
终止:这个也没啥可解释的。
就绪->运行->挂起/睡眠/阻塞->就绪->...->终止
2、 一个没有线程的进程是可以被看作单线程的,如果一个进程内拥有多个线程,进程的执行过程不是一条线(线程)的,而是多条线(线程)共同完成的。
3、 系统在运行的时候会为每个进程分配不同的内存区域,但是不会为线程分配内存(线程所使用的资源是它所属的进程的资源),线程组只能共享资源。那就是说,除了CPU之外(线程在运行的时候要占用CPU资源),计算机内部的软硬件资源的分配与线程无关,线程只能共享它所属进程的资源。
4、 与进程的控制表PCB相似,线程也有自己的控制表TCB,但是TCB中所保存的线程状态比PCB表中少多了。
5、 进程是系统所有资源分配时候的一个基本单位,拥有一个完整的虚拟空间地址,并不依赖线程而独立存在。
  2. 实现 Runnable 接口再 new Thread(YourRunnableOjbect) 
用户模式下的方法有:原子操作(例如一个单一的全局变量),临界区。内核模式下的方法有:事件,信号量,互斥量。
2)事件:注意事件的手动置位和自动置位要分清楚,不要混淆了
多线程同步-event
在所有的内核对象中,事件内核对象是个最基本的。它包含一个使用计数(与所有内核对象一样),一个BOOL值(用于指明该事件是个自动重置的事件还是一个人工重置的事件),还有一个BOOL值(用于指明该事件处于已通知状态还是未通知状态)。事件能够通知一个线程的操作已经完成。有两种类型的事件对象。一种是人工重置事件,另一种是自动重置事件。他们不同的地方在于:当人工重置的事件得到通知时,等待该事件的所有线程均变为可调度线程。当一个自动重置的事件得到通知时,等待该事件的线程中只有一个线程变为可调度线程。


2,线程的基本状态:

a,看《windows操作系统原理》一书中说到线程有7种状态:

就绪ready

备用standby

b,理论上可能有那么多,但是实际程序中就有四种即:

就绪:线程分配了CPU以外的全部资源,等待获得CPU调度

执行:线程获得CPU,正在执行

阻塞:线程由于发生I/O或者其他的操作导致无法继续执行,就放弃处理机,转入线程就绪队列

挂起:由于终端请求,操作系统的要求等原因,导致挂起

c,不同的平台对线程的状态定义不同,大致可以定义为运行、挂起、睡眠、阻塞、就绪、终止这六种。

or

进程的基本状态及状态之间的关系

    状态:运行、阻塞、挂起阻塞、就绪、挂起就绪

    状态之间的转换:准备就绪的进程,被CPU调度执行,变成运行态;

                                 运行中的进程,进行I/O请求或者不能得到所请求的资源,变成阻塞态;

                                 运行中的进程,进程执行完毕(或时间片已到),变成就绪态;

                                 将阻塞态的进程挂起,变成挂起阻塞态,当导致进程阻塞的I/O操作在用户重启进程前完成(称之为唤醒),挂起阻塞态变成挂起就绪态,当用户在I/O操作结束之前重启进程,挂起阻塞态变成阻塞态;

                                 将就绪(或运行)中的进程挂起,变成挂起就绪态,当该进程恢复之后,挂起就绪态变成就绪态;

二,线程与进程的区别?

1、 线程是进程的一部分,所以线程有的时候被称为是轻权进程或者轻量级进程。

or

进程和线程的关系:

    (1)一个线程只能属于一个进程,而一个进程可以有多个线程,但至少有一个线程。

    (2)资源分配给进程,同一进程的所有线程共享该进程的所有资源。

    (3)处理机分给线程,即真正在处理机上运行的是线程。

    (4)线程在执行过程中,需要协作同步。不同进程的线程间要利用消息通信的办法实现同步。线程是指进程内的一个执行单元,也是进程内的可调度实体.

进程与线程的区别:

(1)调度:线程作为调度和分配的基本单位,进程作为拥有资源的基本单位

    (2)并发性:不仅进程之间可以并发执行,同一个进程的多个线程之间也可并发执行

    (3)拥有资源:进程是拥有资源的一个独立单位,线程不拥有系统资源,但可以访问隶属于进程的资源.

    (4)系统开销:在创建或撤消进程时,由于系统都要为之分配和回收资源,导致系统的开销明显大于创建或撤消线程时的开销

~进程间通信的方式?

    (1)管道(pipe)及有名管道(named pipe):管道可用于具有亲缘关系的父子进程间的通信,有名管道除了具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。

    (2)信号(signal):信号是在软件层次上对中断机制的一种模拟,它是比较复杂的通信方式,用于通知进程有某事件发生,一个进程收到一个信号与处理器收到一个中断请求效果上可以说是一致的。

    (3)消息队列(message queue):消息队列是消息的链接表,它克服了上两种通信方式中信号量有限的缺点,具有写权限得进程可以按照一定得规则向消息队列中添加新信息;对消息队列有读权限得进程则可以从消息队列中读取信息。

    (4)共享内存(shared memory):可以说这是最有用的进程间通信方式。它使得多个进程可以访问同一块内存空间,不同进程可以及时看到对方进程中对共享内存中数据得更新。这种方式需要依靠某种同步操作,如互斥锁和信号量等。

    (5)信号量(semaphore):主要作为进程之间及同一种进程的不同线程之间得同步和互斥手段。

    (6)套接字(socket):这是一种更为一般得进程间通信机制,它可用于网络中不同机器之间的进程间通信,应用非常广泛。

三,多线程有几种实现方法,都是什么?

 1. 继承 Thread 类


四,多线程同步和互斥有几种实现方法,都是什么?

线程间的同步方法大体可分为两类:用户模式和内核模式。顾名思义,内核模式就是指利用系统内核对象的单一性来进行同步,使用时需要切换内核态与用户态,而用户模式就是不需要切换到内核态,只在用户态完成操作。

~1,线程(进程)之间的制约关系?

当线程并发执行时,由于资源共享和线程协作,使用线程之间会存在以下两种制约关系。

(1).间接相互制约。一个系统中的多个线程必然要共享某种系统资源,如共享CPU,共享I/O设备,所谓间接相互制约即源于这种资源共享,打印机就是最好的例子,线程A在使用打印机时,其它线程都要等待。

(2).直接相互制约。这种制约主要是因为线程之间的合作,如有线程A将计算结果提供给线程B作进一步处理,那么线程B在线程A将数据送达之前都将处于阻塞状态。

间接相互制约可以称为互斥,直接相互制约可以称为同步,对于互斥可以这样理解,线程A和线程B互斥访问某个资源则它们之间就会产个顺序问题——要么线程A等待线程B操作完毕,要么线程B等待线程操作完毕,这其实就是线程的同步了。因此同步包括互斥,互斥其实是一种特殊的同步。

~2,临界资源和临界区(Critical Section

在一段时间内只允许一个线程访问的资源就称为临界资源或独占资源,计算机中大多数物理设备,进程中的共享变量等待都是临界资源,它们要求被互斥的访问。每个进程中访问临界资源的代码称为临界区

~3,关键段、事件、互斥量(Mutex)、信号量

1)关键段与互斥量都有“线程所有权”概念,可以将“线程所有权”理解成旅馆的房卡,在旅馆前台登记名字拥有房卡后是可以多次进出房间的,其它人则无法进入直到你交出房卡。每个线程必须先通过EnterCriticalSection或WaitForSingleObject来尝试获得“线程所有权”才能调用LeaveCriticalSection或ReleaseMutex。否则会调用失败,这就相当于伪造房卡去办理退房手续——由于登记本上没有你的名字所以会被拒绝。

互斥量能很好的处理“遗弃”情况,因此在多进程之间可以放心的使用。

互斥器的功能和临界区域很相似。区别是:Mutex所花费的时间比Critical Section多的多,但是Mutex是核心对象(Event、Semaphore也是),可以跨进程使用,而且等待一个被锁住的Mutex可以设定TIMEOUT,不会像Critical Section那样无法得知临界区域的情况,而一直死等

用事件(Event)来同步线程是最具弹性的了。一个事件有两种状态:激发状态和未激发状态。也称有信号状态和无信号状态。事件又分两种类型:手动重置事件和自动重置事件。手动重置事件被设置为激发状态后,会唤醒所有等待的线程,而且一直保持为激发状态,直到程序重新把它设置为未激发状态。自动重置事件被设置为激发状态后,会唤醒“一个”等待中的线程,然后自动恢复为未激发状态。所以用自动重置事件来同步两个线程比较理想。MFC中对应的类为CEvent.。CEvent的构造函数默认创建一个自动重置的事件,而且处于未激发状态。共有三个函数来改变事件的状态:SetEvent,ResetEvent和PulseEvent。用事件来同步线程是一种比较理想的做法,但在实际的使用过程中要注意的是,对自动重置事件调用SetEvent和PulseEvent有可能会引起死锁,必须小心。

3)信号量:信号量在计数大于0时表示触发状态,调用WaitForSingleObject不会阻塞,等于0表示未触发状态,调用WaitForSingleObject会阻塞直到有其它线程递增了计数。

注意:互斥量,事件,信号量都是内核对象,可以跨进程使用(通过OpenMutexOpenEventOpenSemaphore)。不过为什么只有互斥量能解决“遗弃”情况了



五,多线程同步和互斥有何异同,在什么情况下分别使用他们?举例说明。

线程同步是指线程之间所具有的一种制约关系,一个线程的执行依赖另一个线程的消息,当它没有得到另一个线程的消息时应等待,直到消息到达时才被唤醒。

线程互斥是指对于共享的进程系统资源,在各单个线程访问时的排它性。当有若干个线程都要使用某一共享资源时,任何时刻最多只允许一个线程去使用,其它要使用该资源的线程必须等待,直到占用资源者释放该资源。线程互斥可以看成是一种特殊的线程同步


~同步和互斥的区别:

        当有多个线程的时候,经常需要去同步这些线程以访问同一个数据或资源。例如,假设有一个程序,其中一个线程用于把文件读到内存,而另一个线程用于统计文件中的字符数。当然,在把整个文件调入内存之前,统计它的计数是没有意义的。但是,由于每个操作都有自己的线程,操作系统会把两个线程当作是互不相干的任务分别执行,这样就可能在没有把整个文件装入内存时统计字数。为解决此问题,你必须使两个线程同步工作。

      所谓同步,是指散步在不同进程之间的若干程序片断,它们的运行必须严格按照规定的某种先后次序来运行,这种先后次序依赖于要完成的特定的任务。如果用对资源的访问来定义的话,同步是指在互斥的基础上(大多数情况),通过其它机制实现访问者对资源的有序访问。在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源。

        所谓互斥,是指散布在不同进程之间的若干程序片断,当某个进程运行其中一个程序片段时,其它进程就不能运行它们之中的任一程序片段,只能等到该进程运行完这个程序片段后才可以运行。如果用对资源的访问来定义的话,互斥某一资源同时只允许一个访问者对其进行访问,具有唯一性和排它性。但互斥无法限制访问者对资源的访问顺序,即访问是无序的。

参考链接:


1,原文地址:http://blog.csdn.net/morewindows/article/details/7442639

2,http://blog.csdn.net/dazhong159/article/details/7896070


0 0
原创粉丝点击