硬实时Linux(RT-Preempt Patch)在PC上的编译、使用和测试

来源:互联网 发布:2016我国旅游业数据 编辑:程序博客网 时间:2024/05/17 20:28

http://21cnbao.blog.51cto.com/109393/1011931

Vanilla kernel的问题

Linux kernel在spinlock、irq上下文方面无法抢占,因此高优先级任务被唤醒到得以执行的时间并不能完全确定。同时,Linux kernel本身也不处理优先级反转。RT-Preempt Patch是在Linux社区kernel的基础上,加上相关的补丁,以使得Linux满足硬实时的需求。本文描述了该patch在PC上的实践。我们的 测试环境为Ubuntu 10.10,默认情况下使用Ubuntu 10.10自带的kernel:

barry@barry-VirtualBox:/lib/modules$ uname -a2.6.35-32-generic #67-Ubuntu SMP Mon Mar 5 19:35:26 UTC 2012 i686 GNU/Linux

在Ubuntu 10.10,apt-get install rt-tests安装rt测试工具集,运行其中的cyclictest测试工具,默认创建5个SCHED_FIFO策略的realtime线程,优先级 76-80,运行周期是1000,1500,2000,2500,3000微秒:

 

barry@barry-VirtualBox:~/development/panda/android$ sudo cyclictest -p 80 -t5 -n [sudo] password for barry: policy: fifo: loadavg: 9.22 8.57 6.75 11/374 21385          T: 0 (20606) P:80 I:1000 C:  18973 Min:     26 Act:   76 Avg:  428 Max:   12637T: 1 (20607) P:79 I:1500 C:  12648 Min:     31 Act:   68 Avg:  447 Max:   10320T: 2 (20608) P:78 I:2000 C:   9494 Min:     28 Act:  151 Avg:  383 Max:    9481T: 3 (20609) P:77 I:2500 C:   7589 Min:     29 Act:  889 Avg:  393 Max:   12670T: 4 (20610) P:76 I:3000 C:   6325 Min:     37 Act:  167 Avg:  553 Max:   13673

由此可见在标准Linux内,rt线程投入运行的jitter非常不稳定,最小值在26-37微秒,平均值为68-889微秒,而最大值则分布在9481-13673微秒之间。

我们还是运行这个测试,但是在运行这个测试的过程中引入更多干扰,如mount /dev/sdb1 ~/development,则结果变为:

barry@barry-VirtualBox:~$ sudo cyclictest -p 80 -t5 -n policy: fifo: loadavg: 0.14 0.29 0.13 2/308 1908          T: 0 ( 1874) P:80 I:1000 C:  28521 Min:      0 Act:  440 Avg: 2095 Max:  331482T: 1 ( 1875) P:79 I:1500 C:  19014 Min:      2 Act:  988 Avg: 2099 Max:  330503T: 2 ( 1876) P:78 I:2000 C:  14261 Min:      7 Act:  534 Avg: 2096 Max:  329989T: 3 ( 1877) P:77 I:2500 C:  11409 Min:      4 Act:  554 Avg: 2073 Max:  328490T: 4 ( 1878) P:76 I:3000 C:   9507 Min:     12 Act:  100 Avg: 2081 Max:  328991

 

mount过程中引入的irq、softirq和spinlock导致最大jitter明显地加大甚至达到了331482us,充分显示出了标准Linux内核中RT线程投入运行时间的不可预期性(硬实时要求意味着可预期)。

如果我们编译一份kernel,选择的是“Voluntary Kernel Preemption (Desktop)“,这类似于2.4不支持kernel抢占的情况,我们运行同样的case,时间的不确定性大地几乎让我们无法接受:

barry@barry-VirtualBox:~$ sudo /usr/local/bin/cyclictest -p 80 -t5 -n# /dev/cpu_dma_latency set to 0uspolicy: fifo: loadavg: 0.23 0.30 0.15 3/247 5086           T: 0 ( 5082) P:80 I:1000 C:   5637 Min:     60 Act:15108679 Avg:11195196 Max:15108679T: 1 ( 5083) P:80 I:1500 C:   5723 Min:     48 Act:12364955 Avg:6389691 Max:12364955T: 2 ( 5084) P:80 I:2000 C:   4821 Min:     32 Act:11119979 Avg:8061814 Max:11661123T: 3 ( 5085) P:80 I:2500 C:   3909 Min:     27 Act:11176854 Avg:4563549 Max:11176854T: 4 ( 5086) P:80 I:3000 C:   3598 Min:     37 Act:9951432 Avg:8761137 Max:116026155

RT-Preempt Patch使能

RT-Preempt Patch对Linux kernel的主要改造包括:

  • Making in-kernel locking-primitives (using spinlocks) preemptible though reimplementation with rtmutexes:
  • Critical sections protected by i.e. spinlock_t and rwlock_t are now preemptible. The creation of non-preemptible sections (in kernel) is still possible with raw_spinlock_t (same APIs like spinlock_t)
  • Implementing priority inheritance for in-kernel spinlocks and semaphores. For more information on priority inversion and priority inheritance please consultIntroduction to Priority Inversion
  • Converting interrupt handlers into preemptible kernel threads: The RT-Preempt patch treats soft interrupt handlers in kernel thread context, which is represented by a task_struct like a common userspace process. However it is also possible to register an IRQ in kernel context.
  • Converting the old Linux timer API into separate infrastructures for high resolution kernel timers plus one for timeouts, leading to userspace POSIX timers with high resolution.

在本试验中,我们取的带RT- Preempt Patch的kernel tree是git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-stable- rt.git,使用其v3.4-rt-rebase branch,编译kernel时选中了"Fully Preemptible Kernel"抢占模型:

───────────────────────── Preemption Model ─────────────────────────┐

│ │          ( ) No Forced Preemption (Server)                  
│ │          ( ) Voluntary Kernel Preemption (Desktop)        
│ │          ( ) Preemptible Kernel (Low-Latency Desktop)     
│ │          ( ) Preemptible Kernel (Basic RT)                 
│ │          (X) Fully Preemptible Kernel (RT)       

另外,kernel中需支持tickless和高精度timer:

┌───────────────────Processor type and features ─────────────────────────┐
│ │                                      [*] Tickless System (Dynamic Ticks)                                                               
│ │                                      [*] High Resolution Timer Support       
 

make modules_install、make install、mkintramfs后,我们得到一个可以在Ubuntu中启动的RT kernel。具体编译方法可详见http://www.linuxidc.com/Linux/2012-01/50749.htm,根据该文修改版本 号等信息即可,我们运行的命令包括:

安装模块

barry@barry-VirtualBox:~/development/linux-2.6$ sudo make modules_install....  INSTALL /lib/firmware/whiteheat_loader.fw  INSTALL /lib/firmware/whiteheat.fw  INSTALL /lib/firmware/keyspan_pda/keyspan_pda.fw  INSTALL /lib/firmware/keyspan_pda/xircom_pgs.fw  INSTALL /lib/firmware/cpia2/stv0672_vp4.bin  INSTALL /lib/firmware/yam/1200.bin  INSTALL /lib/firmware/yam/9600.bin  DEPMOD  3.4.11-rt19

安装kernel

barry@barry-VirtualBox:~/development/linux-2.6$ sudo make install sh /home/barry/development/linux-2.6/arch/x86/boot/install.sh 3.4.11-rt19 arch/x86/boot/bzImage \ System.map "/boot" 

制作initrd

barry@barry-VirtualBox:~/development/linux-2.6$ sudo mkinitramfs 3.4.11-rt19 -o /boot/initrd.img-3.4.11-rt19

修改grub配置

在grub.conf中增加新的启动entry,仿照现有的menuentry,增加一个新的,把其中的相关版本号都变更为3.4.11-rt19,我们的修改如下:

 menuentry 'Ubuntu, with Linux 3.4.11-rt19' --class ubuntu --class gnu-linux --class gnu --class os {    recordfail    insmod part_msdos    insmod ext2    set root='(hd0,msdos1)'    search --no-floppy --fs-uuid --set a0db5cf0-6ce3-404f-9808-88ce18f0177a    linux    /boot/vmlinuz-3.4.11-rt19 root=UUID=a0db5cf0-6ce3-404f-9808-88ce18f0177a ro   quiet splash    initrd    /boot/initrd.img-3.4.11-rt19}

开机时选择3.4.11-rt19启动:

RT-Preempt Patch试用

运行同样的测试cyclictest benchmark工具,结果迥异:

barry@barry-VirtualBox:~$ sudo cyclictest -p 80 -t5 -nWARNING: Most functions require kernel 2.6policy: fifo: loadavg: 0.71 0.42 0.17 1/289 1926          T: 0 ( 1921) P:80 I:1000 C:   7294 Min:      7 Act:   89 Avg:  197 Max:    3177T: 1 ( 1922) P:79 I:1500 C:   4863 Min:     10 Act:   85 Avg:  186 Max:    2681T: 2 ( 1923) P:78 I:2000 C:   3647 Min:     15 Act:   93 Avg:  160 Max:    2504T: 3 ( 1924) P:77 I:2500 C:   2918 Min:     23 Act:   67 Avg:  171 Max:    2114T: 4 ( 1925) P:76 I:3000 C:   2432 Min:     19 Act:  134 Avg:  339 Max:    3129

我们还是运行这个测试,但是在运行这个测试的过程中引入更多干扰,如mount /dev/sdb1 ~/development,则结果变为:

barry@barry-VirtualBox:~$ sudo cyclictest -p 80 -t5 -n# /dev/cpu_dma_latency set to 0uspolicy: fifo: loadavg: 0.11 0.12 0.13 1/263 2860          T: 0 ( 2843) P:80 I:1000 C:  28135 Min:      5 Act:  198 Avg:  200 Max:    7387T: 1 ( 2844) P:80 I:1500 C:  18756 Min:     22 Act:  169 Avg:  188 Max:    6875T: 2 ( 2845) P:80 I:2000 C:  14067 Min:      7 Act:   91 Avg:  149 Max:    7288T: 3 ( 2846) P:80 I:2500 C:  11254 Min:     19 Act:  131 Avg:  155 Max:    6287T: 4 ( 2847) P:80 I:3000 C:   9378 Min:     25 Act:   58 Avg:  172 Max:    6121

时间在可预期的范围内,没有出现标准kernel里面jitter达到331482的情况。需要说明的是,这个jitter大到超过了我们的预期,达到了10ms量级,相信是受到了我们的测试都是在Virtualbox虚拟机进行的影响。按照其他文档显示,这个jitter应该在数十us左右。

我们在这个kernel里面运行ps aux命令,可以看出线程化了的irq:

USER       PID %CPU %MEM    VSZ   RSS TTY      STAT START   TIME COMMANDroot         1  0.8  0.1   2880  1788 ?        Ss   18:39   0:03 initroot         2  0.0  0.0      0     0 ?        S    18:39   0:00 kthreadd...root        45  0.0  0.0      0     0 ?        S    18:39   0:00 irq/14-ata_piixroot        46  0.0  0.0      0     0 ?        S    18:39   0:00 irq/15-ata_piixroot        50  0.0  0.0      0     0 ?        S    18:39   0:00 irq/19-ehci_hcdroot        51  0.0  0.0      0     0 ?        S    18:39   0:00 irq/22-ohci_hcdroot        55  0.0  0.0      0     0 ?        S    18:39   0:00 irq/12-i8042root        56  0.0  0.0      0     0 ?        S    18:39   0:00 irq/1-i8042root        57  0.0  0.0      0     0 ?        S    18:39   0:00 irq/8-rtc0root       863  0.0  0.0      0     0 ?        S    18:39   0:00 irq/19-eth0root       864  0.0  0.0      0     0 ?        S    18:39   0:00 irq/16-eth1root      1002  0.5  0.0      0     0 ?        S    18:39   0:01 irq/21-snd_inte...

在其中编写一个RT 线程的应用程序,通常需要如下步骤:

  • Setting a real time scheduling policy and priority.
  • Locking memory so that page faults caused by virtual memory will not undermine deterministic behavior
  • Pre-faulting the stack, so that a future stack fault will not undermine deterministic behavior

例 子test_rt.c,其中的mlockall是为了防止进程的虚拟地址空间对应的物理页面被swap出去,而stack_prefault()则故意提 前导致stack往下增长8KB,因此其后的函数调用和局部变量的使用将不再导致栈增长(依赖于page fault和内存申请):

#include <stdlib.h>#include <stdio.h>#include <time.h>#include <sched.h>#include <sys/mman.h>#include <string.h>#define MY_PRIORITY (49) /* we use 49 as the PRREMPT_RT use 50                            as the priority of kernel tasklets                            and interrupt handler by default */#define MAX_SAFE_STACK (8*1024) /* The maximum stack size which is                                   guaranteed safe to access without                                   faulting */#define NSEC_PER_SEC    (1000000000) /* The number of nsecs per sec. */void stack_prefault(void) {        unsigned char dummy[MAX_SAFE_STACK];        memset(dummy, 0, MAX_SAFE_STACK);        return;}int main(int argc, char* argv[]){        struct timespec t;        struct sched_param param;        int interval = 50000; /* 50us*/        /* Declare ourself as a real time task */        param.sched_priority = MY_PRIORITY;        if(sched_setscheduler(0, SCHED_FIFO, ¶m) == -1) {                perror("sched_setscheduler failed");                exit(-1);        }        /* Lock memory */        if(mlockall(MCL_CURRENT|MCL_FUTURE) == -1) {                perror("mlockall failed");                exit(-2);        }        /* Pre-fault our stack */        stack_prefault();        clock_gettime(CLOCK_MONOTONIC ,&t);        /* start after one second */        t.tv_sec++;        while(1) {                /* wait until next shot */                clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &t, NULL);                /* do the stuff */                /* calculate next shot */                t.tv_nsec += interval;                while (t.tv_nsec >= NSEC_PER_SEC) {                       t.tv_nsec -= NSEC_PER_SEC;                        t.tv_sec++;                }   }}

编译之:gcc -o test_rt test_rt.c -lrt。本节就到这里,后续我们会有一系列博文来描述RT-Preempt Patch对kernel的主要改动,以及其工作原理。

 


0 0
原创粉丝点击