动态规划(DP)算法

来源:互联网 发布:算法之美 京东 编辑:程序博客网 时间:2024/05/23 07:25

一.算法思想

和贪婪算法一样,在动态规划中,可将一个问题的解决方案视为一系列决策的结果。不同的是,在贪婪算法中,每采用一次贪婪准则便做出一个不可撤回的决策,而在动态规划中,还要考察每个最优决策序列中是否包含一个最优子序列。

动态规划方法采用最优原则( principle of optimality)来建立用于计算最优解的递归式。所谓最优原则即不管前面的策略如何,此后的决策必须是基于当前状态(由上一次决策产生)的最优决策。由于对于有些问题的某些递归式来说并不一定能保证最优原则,因此在求解问题时有必要对它进行验证。若不能保持最优原则,则不可应用动态规划方法。在得到最优解的递归式之后,需要执行回溯(t r a c e b a c k)以构造最优解。

编写一个简单的递归程序来求解动态规划递归方程是一件很诱人的事。然而,正如我们将在下文看到的,如果不努力地去避免重复计算,递归程序的复杂性将非常可观。如果在递归程序设计中解决了重复计算问题时,复杂性将急剧下降。动态规划递归方程也可用迭代方式来求解,这时很自然地避免了重复计算。尽管迭代程序与避免重复计算的递归程序有相同的复杂性,但迭代程序不需要附加的递归栈空间,因此将比避免重复计算的递归程序更快。

http://www.ccidedu.com/art/1925/20040927/159647_1.html

动态规划的实质是分治思想和解决冗余,因此,动态规划是一种将问题实例分解为更小的、相似的子问题,并存储子问题的解而避免计算重复的子问题,以解决最优化问题的算法策略。在求解过程中,该方法也是通过求解局部子问题的解达到全局最优解,但与分治法和贪心法不同的是, 动态规划允许这些子问题不独立,也允许其通过自身子问题的解作出选择,该方法对每一个子问题只解一次,并将结果保存 起来,避免每次碰到时都要重复计算。子问题的重叠性 动态规划算法的关键在于解决冗余,这是动态规划算法的根本目的。

http://tag.csdn.net/Article/0c26f380-46bd-4119-a86f-f1628fdaf93a.html

DP(动态规划)的基本思想和基本步骤(zz)

2006年07月30日 星期日 13:46

       动态规划的实质是分治思想和解决冗余,因此,动态规划是一种将问题实例分解为更小的、相似的子问题,并存储子问题的解而避免计算重复的子问题,以解决最优化问题的算法策略。

   动态规划法与分治法和贪心法类似,它们都是将问题实例归纳为更小的、相似的子问题,并通过求解子问题产生一个全局最优解。其中贪心法的当前选择可能要依赖已经作出的所有选择,但不依赖于有待于做出的选择和子问题。因此贪心法自顶向下,一步一步地作出贪心选择;而分治法中的各个子问题是独立的 (即不包含公共的子问题),因此一旦递归地求出各子问题的解后,便可自下而上地将子问题的解合并成问题的解。但不足的是,如果当前选择可能要依赖子问题的解时,则难以通过局部的贪心策略达到全局最优解;如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题。

   解决上述问题的办法是利用动态规划。该方法主要应用于最优化问题,这类问题会有多种可能的解,每个解都有一个值,而动态规划找出其中最优(最大或最小)值的解。若存在若干个取最优值的解的话,它只取其中的一个。在求解过程中,该方法也是通过求解局部子问题的解达到全局最优解,但与分治法和贪心法不同的是,动态规划允许这些子问题不独立,(亦即各子问题可包含公共的子子问题)也允许其通过自身子问题的解作出选择,该方法对每一个子问题只解一次,并将结果保存起来,避免每次碰到时都要重复计算。

 

   因此,动态规划法所针对的问题有一个显著的特征,即它所对应的子问题树中的子问题呈现大量的重复。动态规划法的关键就在于,对于重复出现的子问题,只在第一次遇到时加以求解,并把答案保存起来,让以后再遇到时直接引用,不必重新求解。

  

   设计一个标准的动态规划算法,通常可按以下几个步骤进行:

   划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。注意这若干个阶段一定要是有序的或者是可排序的(即无后向性),否则问题就无法用动态规划求解。

   选择状态:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。当然,状态的选择要满足无后效性。

   确定决策并写出状态转移方程:之所以把这两步放在一起,是因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。所以,如果我们确定了决策,状态转移方程也就写出来了。但事实上,我们常常是反过来做,根据相邻两段的各状态之间的关系来确定决策。

   写出规划方程(包括边界条件):动态规划的基本方程是规划方程的通用形式化表达式。一般说来,只要阶段、状态、决策和状态转移确定了,这一步还是比较简单的。

 

   动态规划的主要难点在于理论上的设计,一旦设计完成,实现部分就会非常简单。根据动态规划的基本方程可以直接递归计算最优值,但是一般将其改为递推计算。

  

   解决上述问题的办法是利用动态规划。该方法主要应用于最优化问题,这类问题会有多种可能的解,每个解都有一个值,而动态规划找出其中最优(最大或最小)值的解。若存在若干个取最优值的解的话,它只取其中的一个。在求解过程中,该方法也是通过求解局部子问题的解达到全局最优解,但与分治法和贪心法不同的是,动态规划允许这些子问题不独立,(亦即各子问题可包含公共的子子问题)也允许其通过自身子问题的解作出选择,该方法对每一个子问题只解一次,并将结果保存起来,避免每次碰到时都要重复计算。

 

   因此,动态规划法所针对的问题有一个显著的特征,即它所对应的子问题树中的子问题呈现大量的重复。动态规划法的关键就在于,对于重复出现的子问题,只在第一次遇到时加以求解,并把答案保存起来,让以后再遇到时直接引用,不必重新求解。

  

   设计一个标准的动态规划算法,通常可按以下几个步骤进行:

   划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。注意这若干个阶段一定要是有序的或者是可排序的(即无后向性),否则问题就无法用动态规划求解。

   选择状态:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。当然,状态的选择要满足无后效性。

   确定决策并写出状态转移方程:之所以把这两步放在一起,是因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。所以,如果我们确定了决策,状态转移方程也就写出来了。但事实上,我们常常是反过来做,根据相邻两段的各状态之间的关系来确定决策。

   写出规划方程(包括边界条件):动态规划的基本方程是规划方程的通用形式化表达式。一般说来,只要阶段、状态、决策和状态转移确定了,这一步还是比较简单的。

 

   动态规划的主要难点在于理论上的设计,一旦设计完成,实现部分就会非常简单。根据动态规划的基本方程可以直接递归计算最优值,但是一般将其改为递推计算。

http://hi.baidu.com/faithyacht/blog/item/1dde59820d62daa20df4d2a4.html

三个典型例题

--  动态规划的三道典型例题
石子合并

在一个圆形操场的四周摆放着N堆石子(N<=        100),现要将石子有次序地合并成一堆.规定每次只能选取相邻的两堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分.编一程序,由文件读入堆栈数N及每堆栈的石子数(<=20).



选择一种合并石子的方案,使用权得做N-1次合并,得分的总和最小;

选择一种合并石子的方案,使用权得做N-1次合并,得分的总和最小;



输入数据:

第一行为石子堆数N;
第二行为每堆的石子数,每两个数之间用一个空格分隔.

输出数据:

从第一至第N行为得分最小的合并方案.第N+1行是空行.从第N+2行到第2N+1行是得分最大合并方案.每种合并方案用N行表示,其中第i行(1<=i<=N)表示第i次合并前各堆的石子数(依顺时针次序输出,哪一堆先输出均可).要求将待合并的两堆石子数以相应的负数表示。

输入输出范例: 
CODE:
  [Copy to clipboard] 
输入:
4
4 5  9  4CODE:  [Copy to clipboard] 
输出:
-4 5 9 -4
-8 -5 9
-13 -9
22

4 -5 -9 4
4 -14 -4
-4 -18
22最小代价子母树

设有一排数,共n个,例如:22  14  7  13  26  15  11.任意2个相邻的数可以进行归并,归并的代价为该两个数的和,经过不断的归并,最后归为一堆,而全部归并代价的和称为总代价,给出一种归并算法,使总代价为最小。

输入、输出数据格式与“石子合并”相同。 
CODE:
  [Copy to clipboard] 
输入样例:
4
12 5 16  4CODE:  [Copy to clipboard] 
输出样例:
-12  -5  16  4
17  -16  -4
-17  -20
37 背包问题

设有n种物品,每种物品有一个重量及一个价值。但每种物品的数量是无限的,同时有一个背包,最大载重量为xk,今从n种物品中选取若干件(同一种物品可以多次选取),使其重量的和小于等于xk,而价值的和为最大。

输入数据:

第一行两个数:物品总数n,背包载重量xk;两个数用空格分隔;
第二行N个数,为n种物品重量;两个数用空格分隔;
第三行N个数,为n种物品价值; 两个数用空格分隔;

输出数据:

第一行总价值;
以下N行,每行两个数,分别为选取物品的编号及数量; 
CODE:  [Copy to clipboard] 
输入样例:
4  10
2  3  4  7
1  3  5  9CODE:  [Copy to clipboard] 
输出样例:
12
2  1
4  1 商店购物

某商店中每种商品都有一个价格。例如,一朵花的价格是2 ICU(ICU 是信息学竞赛的货币的单位);一个花瓶的价格是5 ICU。为了吸引更多的顾客,商店提供了特殊优惠价。特殊优惠商品是把一种或几种商品分成一组。并降价销售。例如:3朵花的价格不是6而是5 ICU ;2个花瓶加1朵花是10 ICU不是12 ICU。
编一个程序,计算某个顾客所购商品应付的费用。 要充分利用优惠价以使顾客付款最小。请注意,你不能变更顾客所购商品的种类及数量, 即使增加某些商品会使付款总数减小也不允许你作出任何变更。假定各种商品价格用优惠价如上所述, 并且某顾客购买物品为:3朵花和2个花瓶。那么顾客应付款为14 ICU因为:
1朵花加2个花瓶: 优惠价:10 ICU
2朵花 正常价: 4 ICU

输入数据
用两个文件表示输入数据。第一个文件INPUT.TXT描述顾客所购物品(放在购物筐中);第二个文件描述商店提供的优惠商品及价格(文件名为OFF ER.TXT)。 两个文件中都只用整数。
第一个文件INPUT.TXT的格式为:第一行是一个数字B(0≤B≤5),表示所购商品种类数。下面共B行,每行中含3个数C,K,P。 C 代表商品的编码(每种商品有一个唯一的编码),1≤C≤999。K代表该种商品购买总数,1≤K≤5。P 是该种商品的正常单价(每件商品的价格),1≤P≤999。请注意,购物筐中最多可放5*5=25件商品。
第二个文件OFFER.TXT的格式为:第一行是一个数字S(0≤S≤9 9),表示共有S 种优惠。下面共S行,每一行描述一种优惠商品的组合中商品的种类。下面接着是几个数字对(C,K),其中C代表商品编码,1≤C≤9 99。K代表该种商品在此组合中的数量,1≤K≤5。本行最后一个数字P(1≤ P≤9999)代表此商品组合的优惠价。当然, 优惠价要低于该组合中商品正常价之总和。

输出数据

在输出文件OUTPUT.TXT中写 一个数字(占一行), 该数字表示顾客所购商品(输入文件指明所购商品)应付的最低货款。

输入/输出数据举例 
CODE:
  [Copy to clipboard] 
INPUT        OFFER.TXT                OUTPUT.TXT
-------------------------------------------------------------------
2           2                              14
7 3 2         1 7 3 5
8 2 5         2 7 1 8 2 10

0 0
原创粉丝点击