Strassen矩阵算法分析及其C++实现 递归分治法(转)

来源:互联网 发布:h5与后端数据库 编辑:程序博客网 时间:2024/05/22 14:42

对于矩阵乘法 C = A × B,通常的做法是将矩阵进行分块相乘,如下图所示:

从上图可以看出这种分块相乘总共用了8次乘法,当然对于子矩阵相乘(如A0×B0),还可以继续递归使用分块相乘。对于中小矩阵来说,很适合使用这种分块乘法,但是对于大矩阵来说,递归的次数较多,如果能减少每次分块乘法的次数,那么性能将可以得到很好的提高。

Strassen矩阵乘法就是采用了一个简单的运算技巧,将上面的8次矩阵相乘变成了7次乘法,看别小看这减少的1次乘法,因为每递归1次,性能就提高了1/8,比如对于1024*1024的矩阵,第1次先分解成7次512*512的矩阵相乘,对于512*512的矩阵,又可以继续递归分解成256*256的矩阵相乘,…,一直递归下去,假设分解到64*64的矩阵大小后就不再递归,那么所花的时间将是分块矩阵乘法的(7/8) * (7/8) * (7/8) * (7/8) = 0.586倍,提高了快接近一倍。当然这是理论上的值,因为实际上strassen乘法增加了其他运算开销,实际性能会略低一点。

由上可见,Strassen矩阵乘法是通过递归实现的,它将一般情况下二阶矩阵乘法(可扩展到n阶,但Strassen矩阵乘法要求n是2的幂)所需的8次乘法降低为7次,其C++实现代码如下:

下面就是Strassen矩阵乘法的实现方法,

M1 = (A0 + A3) × (B0 + B3)

M2 = (A2 + A3) × B0

M3 = A0 × (B1 - B3)M4 = A3 × (B2 - B0)M5 = (A0 + A1) × B3M6 = (A2 - A0) × (B0 + B1)M7 = (A1 - A3) × (B2 + B3)C0 = M1 + M4 - M5 + M7C1 = M3 + M5C2 = M2 + M4C3 = M1 - M2 + M3 + M6

在求解M1,M2,M3,M4,M5,M6,M7时需要使用7次矩阵乘法,其他都是矩阵加法和减法。

下面看看Strassen矩阵乘法的串行实现伪代码:

Serial_StrassenMultiply(A, B, C)

{

T1 = A0 + A3;T2 = B0 + B3;StrassenMultiply(T1, T2, M1);T1 = A2 + A3;StrassenMultiply(T1, B0, M2);T1 = (B1 - B3);StrassenMultiply (A0, T1, M3);T1 = B2 - B0;StrassenMultiply(A3, T1, M4);

T1 = A0 + A1;

StrassenMultiply(T1, B3, M5);

T1 = A2 – A0;T2 = B0 + B1;StrassenMultiply(T1, T2, M6);T1 = A1 – A3;T2 = B2 + B3;StrassenMultiply(T1, T2, M7);C0 = M1 + M4 - M5 + M7C1 = M3 + M5C2 = M2 + M4C3 = M1 - M2 + M3 + M6

}

#include <iostream>  using namespace std;   const int N = 6;     //Define the size of the Matrix  template<typename T>   void Strassen(int n, T A[][N], T B[][N], T C[][N]);   template<typename T>   void input(int n, T p[][N]);   template<typename T>   void output(int n, T C[][N]);   int main() {       //Define three Matrices      int A[N][N],B[N][N],C[N][N];           //对A和B矩阵赋值,随便赋值都可以,测试用      for(int i=0; i<N; i++) {          for(int j=0; j<N; j++) {              A[i][j] = i * j;              B[i][j] = i * j;              }                }       //调用Strassen方法实现C=A*B       Strassen(N, A, B, C);       //输出矩阵C中值       output(N, C);        system("pause");       return 0;   }   template<typename T>   void input(int n, T p[][N]) {        for(int i=0; i<n; i++) {            cout<<"Please Input Line "<<i+1<<endl;           for(int j=0; j<n; j++) {               cin>>p[i][j];            }                 }   }   template<typename T>   void output(int n, T C[][N]) {         cout<<"The Output Matrix is :"<<endl;        for(int i=0; i<n; i++) {           for(int j=0; j<n; j++) {               cout<<C[i][j]<<""<<endl;                    }                 }        }   template<typename T>   void Matrix_Multiply(T A[][N], T B[][N], T C[][N]) {  //Calculating A*B->C       for(int i=0; i<2; i++) {           for(int j=0; j<2; j++) {               C[i][j] = 0;                    for(int t=0; t<2; t++) {                  C[i][j] = C[i][j] + A[i][t]*B[t][j];                       }              }                 }   }   template <typename T>   void Matrix_Add(int n, T X[][N], T Y[][N], T Z[][N]) {        for(int i=0; i<n; i++) {           for(int j=0; j<n; j++) {               Z[i][j] = X[i][j] + Y[i][j];                    }                 }        }   template <typename T>   void Matrix_Sub(int n, T X[][N], T Y[][N], T Z[][N]) {        for(int i=0; i<n; i++) {           for(int j=0; j<n; j++) {               Z[i][j] = X[i][j] - Y[i][j];                    }                 }        }   template <typename T>   void Strassen(int n, T A[][N], T B[][N], T C[][N]) {         T A11[N][N], A12[N][N], A21[N][N], A22[N][N];         T B11[N][N], B12[N][N], B21[N][N], B22[N][N];              T C11[N][N], C12[N][N], C21[N][N], C22[N][N];         T M1[N][N], M2[N][N], M3[N][N], M4[N][N], M5[N][N], M6[N][N], M7[N][N];         T AA[N][N], BB[N][N];        if(n == 2) {  //2-order           Matrix_Multiply(A, B, C);              } else {           //将矩阵A和B分成阶数相同的四个子矩阵,即分治思想。          for(int i=0; i<n/2; i++) {              for(int j=0; j<n/2; j++) {                  A11[i][j] = A[i][j];                  A12[i][j] = A[i][j+n/2];                  A21[i][j] = A[i+n/2][j];                  A22[i][j] = A[i+n/2][j+n/2];                  B11[i][j] = B[i][j];                  B12[i][j] = B[i][j+n/2];                  B21[i][j] = B[i+n/2][j];                  B22[i][j] = B[i+n/2][j+n/2];                   }                    }             //Calculate M1 = (A0 + A3) × (B0 + B3)           Matrix_Add(n/2, A11, A22, AA);            Matrix_Add(n/2, B11, B22, BB);            Strassen(n/2, AA, BB, M1);           //Calculate M2 = (A2 + A3) × B0           Matrix_Add(n/2, A21, A22, AA);            Strassen(n/2, AA, B11, M2);           //Calculate M3 = A0 × (B1 - B3)           Matrix_Sub(n/2, B12, B22, BB);            Strassen(n/2, A11, BB, M3);           //Calculate M4 = A3 × (B2 - B0)           Matrix_Sub(n/2, B21, B11, BB);            Strassen(n/2, A22, BB, M4);           //Calculate M5 = (A0 + A1) × B3           Matrix_Add(n/2, A11, A12, AA);            Strassen(n/2, AA, B22, M5);           //Calculate M6 = (A2 - A0) × (B0 + B1)           Matrix_Sub(n/2, A21, A11, AA);            Matrix_Add(n/2, B11, B12, BB);            Strassen(n/2, AA, BB, M6);           //Calculate M7 = (A1 - A3) × (B2 + B3)           Matrix_Sub(n/2, A12, A22, AA);            Matrix_Add(n/2, B21, B22, BB);            Strassen(n/2, AA, BB, M7);           //Calculate C0 = M1 + M4 - M5 + M7           Matrix_Add(n/2, M1, M4, AA);            Matrix_Sub(n/2, M7, M5, BB);            Matrix_Add(n/2, AA, BB, C11);           //Calculate C1 = M3 + M5           Matrix_Add(n/2, M3, M5, C12);           //Calculate C2 = M2 + M4           Matrix_Add(n/2, M2, M4, C21);           //Calculate C3 = M1 - M2 + M3 + M6           Matrix_Sub(n/2, M1, M2, AA);            Matrix_Add(n/2, M3, M6, BB);            Matrix_Add(n/2, AA, BB, C22);           //Set the result to C[][N]          for(int i=0; i<n/2; i++) {              for(int j=0; j<n/2; j++) {                  C[i][j] = C11[i][j];                  C[i][j+n/2] = C12[i][j];                  C[i+n/2][j] = C21[i][j];                  C[i+n/2][j+n/2] = C22[i][j];                       }                    }         }   }
0 0