Partition(hdu4651)2013 Multi-University Training Contest 5----(整数拆分一)

来源:互联网 发布:linux libxml2 安装 编辑:程序博客网 时间:2024/05/16 16:58

Partition

Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 954 Accepted Submission(s): 545


Problem Description
How many ways can the numbers 1 to 15 be added together to make 15? The technical term for what you are asking is the "number of partition" which is often called P(n). A partition of n is a collection of positive integers (not necessarily distinct) whose sum equals n.

Now, I will give you a number n, and please tell me P(n) mod 1000000007.

Input
The first line contains a number T(1 ≤ T ≤ 100), which is the number of the case number. The next T lines, each line contains a number n(1 ≤ n ≤ 105) you need to consider.


Output
For each n, output P(n) in a single line.

Sample Input
45111519

Sample Output
756176490

Source
2013 Multi-University Training Contest 5 


题意:问一个数n能被拆分成多少种方法

首先你要知道母函数+然后你要知道五边形数定理;

设第n个五边形数为,那么,即序列为:1, 5, 12, 22, 35, 51, 70, ...

 

对应图形如下:

 

 

设五边形数的生成函数为,那么有:

 

 

 

 

以上是五边形数的情况。下面是关于五边形数定理的内容:

 

五边形数定理是一个由欧拉发现的数学定理,描述欧拉函数展开式的特性。欧拉函数的展开式如下:

 

 

 

欧拉函数展开后,有些次方项被消去,只留下次方项为1, 2, 5, 7, 12, ...的项次,留下来的次方恰为广义五边形数。

 

 

五边形数和分割函数的关系

 

欧拉函数的倒数是分割函数的母函数,亦即:

 

   其中为k的分割函数。

 

上式配合五边形数定理,有:

 

 

 
在 n>0 时,等式右侧的系数均为0,比较等式二侧的系数,可得
 

p(n) - p(n-1) - p(n-2) + p(n-5) + p(n-7) + \cdots=0

 

因此可得到分割函数p(n)的递归式:p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + \cdots

 

例如n=10时,有:p(10) = p(9) + p(8) - p(5) - p(3) = 30 + 22 - 7 -  3 = 42

 

 

所以,通过上面递归式,我们可以很快速地计算n的整数划分方案数p(n)了。

 

详见维基百科:https://zh.wikipedia.org/wiki/%E4%BA%94%E8%A7%92%E6%95%B0#.E5.BB.A3.E7.BE.A9.E4.BA.94.E9.82.8A.E5.BD.A2.E6.95.B8 或 https://zh.wikipedia.org/wiki/%E4%BA%94%E9%82%8A%E5%BD%A2%E6%95%B8%E5%AE%9A%E7%90%86 

转载请注明出处:http://blog.csdn.net/u010579068 

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4651

详见代码:
#include<iostream>#include<cstdio>#define NN 100005#define LL __int64#define mod 1000000007using namespace std;LL wu[NN],pa[NN];void init(){    pa[0]=1;    pa[1]=1;    pa[2]=2;    pa[3]=3;    LL ca=0;    for(LL i=1;i<=100000/2;i++)    {        wu[ca++]=i*(3*i-1)/2;        wu[ca++]=i*(3*i+1)/2;        if(wu[ca-1]>100000) break;    }    for(LL i=4;i<=100000;i++)    {        pa[i]=(pa[i-1]+pa[i-2])%mod;        ca=1;        while(wu[2*ca]<=i)        {            if(ca&1)            {                pa[i]=(pa[i]-pa[i-wu[2*ca]])%mod;                pa[i]=(pa[i]%mod+mod)%mod;                if(wu[2*ca+1]<=i)                    pa[i]=(pa[i]-pa[i-wu[2*ca+1]])%mod;                pa[i]=(pa[i]%mod+mod)%mod;            }            else            {                pa[i]=(pa[i]+pa[i-wu[2*ca]])%mod;                pa[i]=(pa[i]%mod+mod)%mod;                if(wu[2*ca+1]<=i)                    pa[i]=(pa[i]+pa[i-wu[2*ca+1]])%mod;                pa[i]=(pa[i]%mod+mod)%mod;            }            ca++;        }    }}int main(){    int T,n;    init();    scanf("%d",&T);    while(T--)    {        scanf("%d",&n);        printf("%I64d\n",pa[n]);    }    return 0;}





0 0
原创粉丝点击