二分图匹配

来源:互联网 发布:vb 无符号整型 编辑:程序博客网 时间:2024/04/29 03:41

二分图匹配
大部分内容转载自[http://www.renfei.org/blog/bipartite-matching.html]学到了很多

二分图:简单来说,如果图中点可以被分为两组,并且使得所有边都跨越组的边界,则这就是一个二分图。准确地说:把一个图的顶点划分为两个不相交集 U 和V ,使得每一条边都分别连接U、V中的顶点。如果存在这样的划分,则此图为一个二分图。二分图的一个等价定义是:不含有「含奇数条边的环」的图。图 1 是一个二分图。为了清晰,我们以后都把它画成图 2 的形式。

匹配:在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。例如,图 3、图 4 中红色的边就是图 2 的匹配。

我们定义匹配点、匹配边、未匹配点、非匹配边,它们的含义非常显然。例如图 3 中 1、4、5、7 为匹配点,其他顶点为未匹配点;1-5、4-7为匹配边,其他边为非匹配边。

最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。图 4 是一个最大匹配,它包含 4 条匹配边。

完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。图 4 是一个完美匹配。显然,完美匹配一定是最大匹配(完美匹配的任何一个点都已经匹配,添加一条新的匹配边一定会与已有的匹配边冲突)。但并非每个图都存在完美匹配。

二分图匹配有什么用呢?很重要的一点是,如果存在两两匹配的多种情况,找到最大的匹配组合数。比如有一群男孩和一群女孩,A喜欢ab,B喜欢b,我们可以得到最多满足两组Aa和Bb,如果要求是互相喜欢,还可以转化成如图所示,是否可能让所有男孩和女孩两两配对,使得每对儿都互相喜欢呢?图论中,这就是完美匹配问题。如果换一个说法:最多有多少互相喜欢的男孩/女孩可以配对儿?这就是最大匹配问题

下面来讲讲匈牙利算法,用增广路径求二分图最大匹配
交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边…形成的路径叫交替路。

增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替路称为增广路(agumenting path)。例如,图 5 中的一条增广路如图 6 所示(图中的匹配点均用红色标出):


增广路有一个重要特点:非匹配边比匹配边多一条。因此,研究增广路的意义是改进匹配。只要把增广路中的匹配边和非匹配边的身份交换即可。由于中间的匹配节点不存在其他相连的匹配边,所以这样做不会破坏匹配的性质。交换后,图中的匹配边数目比原来多了 1 条。

我们可以通过不停地找增广路来增加匹配中的匹配边和匹配点。找不到增广路时,达到最大匹配(这是增广路定理)。匈牙利算法正是这么做的。在给出匈牙利算法 DFS 和 BFS 版本的代码之前,先讲一下匈牙利树。

匈牙利树一般由 BFS 构造(类似于 BFS 树)。从一个未匹配点出发运行 BFS(唯一的限制是,必须走交替路),直到不能再扩展为止。例如,由图 7,可以得到如图 8 的一棵 BFS 树:

这棵树存在一个叶子节点为非匹配点(7 号),但是匈牙利树要求所有叶子节点均为匹配点,因此这不是一棵匈牙利树。如果原图中根本不含 7 号节点,那么从 2 号节点出发就会得到一棵匈牙利树。这种情况如图 9 所示(顺便说一句,图 8 中根节点 2 到非匹配叶子节点 7 显然是一条增广路,沿这条增广路扩充后将得到一个完美匹配)。
下面给出匈牙利算法的 DFS 和 BFS 版本的代码:

// 顶点、边的编号均从 0 开始// 邻接表储存struct Edge{    int from;    int to;    int weight;    Edge(int f, int t, int w):from(f), to(t), weight(w) {}};vector<int> G[__maxNodes]; /* G[i] 存储顶点 i 出发的边的编号 */vector<Edge> edges;typedef vector<int>::iterator iterator_t;int num_nodes;int num_left;int num_right;int num_edges;int matching[__maxNodes]; /* 存储求解结果 */int check[__maxNodes];bool dfs(int u){    for (iterator_t i = G[u].begin(); i != G[u].end(); ++i) { // 对 u 的每个邻接点        int v = edges[*i].to;        if (!check[v]) {     // 要求不在交替路中            check[v] = true; // 放入交替路            if (matching[v] == -1 || dfs(matching[v])) {                // 如果是未盖点,说明交替路为增广路,则交换路径,并返回成功                matching[v] = u;                matching[u] = v;                return true;            }        }    }    return false; // 不存在增广路,返回失败}int hungarian(){    int ans = 0;    memset(matching, -1, sizeof(matching));    for (int u=0; u < num_left; ++u) {        if (matching[u] == -1) {            memset(check, 0, sizeof(check));            if (dfs(u))                ++ans;        }    }    return ans;}//以下为BFS版本queue<int> Q;int prev[__maxNodes];int Hungarian(){    int ans = 0;    memset(matching, -1, sizeof(matching));    memset(check, -1, sizeof(check));    for (int i=0; i<num_left; ++i) {        if (matching[i] == -1) {            while (!Q.empty()) Q.pop();            Q.push(i);            prev[i] = -1; // 设 i 为路径起点            bool flag = false; // 尚未找到增广路            while (!Q.empty() && !flag) {                int u = Q.front();                for (iterator_t ix = G[u].begin(); ix != G[u].end() && !flag; ++ix) {                    int v = edges[*ix].to;                    if (check[v] != i) {                        check[v] = i;                        Q.push(matching[v]);                        if (matching[v] >= 0) { // 此点为匹配点                            prev[matching[v]] = u;                        } else { // 找到未匹配点,交替路变为增广路                            flag = true;                            int d=u, e=v;                            while (d != -1) {                                int t = matching[d];                                matching[d] = e;                                matching[e] = d;                                d = prev[d];                                e = t;                            }                        }                    }                }                Q.pop();            }            if (matching[i] != -1) ++ans;        }    }    return ans;}

匈牙利算法的要点如下

从左边第 1 个顶点开始,挑选未匹配点进行搜索,寻找增广路。

如果经过一个未匹配点,说明寻找成功。更新路径信息,匹配边数 +1,停止搜索。
如果一直没有找到增广路,则不再从这个点开始搜索。事实上,此时搜索后会形成一棵匈牙利树。我们可以永久性地把它从图中删去,而不影响结果。
由于找到增广路之后需要沿着路径更新匹配,所以我们需要一个结构来记录路径上的点。DFS 版本通过函数调用隐式地使用一个栈,而 BFS 版本使用 prev 数组。

性能比较

两个版本的时间复杂度均为O(V⋅E)。DFS 的优点是思路清晰、代码量少,但是性能不如 BFS。我测试了两种算法的性能。对于稀疏图,BFS 版本明显快于 DFS 版本;而对于稠密图两者则不相上下。在完全随机数据 9000 个顶点 4,0000 条边时前者领先后者大约 97.6%,9000 个顶点 100,0000 条边时前者领先后者 8.6%, 而达到 500,0000 条边时 BFS 仅领先 0.85%。

补充定义和定理:

最大匹配数:最大匹配的匹配边的数目

最小点覆盖数:选取最少的点,使任意一条边至少有一个端点被选择

最大独立数:选取最多的点,使任意所选两点均不相连

最小路径覆盖数:对于一个 DAG(有向无环图),选取最少条路径,使得每个顶点属于且仅属于一条路径。路径长可以为 0(即单个点)。

定理1:最大匹配数 = 最小点覆盖数(这是 Konig 定理)

定理2:最大匹配数 = 最大独立数

定理3:最小路径覆盖数 = 顶点数 - 最大匹配数

最后,使用匈牙利算法求出HDU2063,代码如下

#include<iostream>using namespace std;bool map[502][502],d[502];int n,m;int s[502];bool find(int a){    int i;    for(i=1;i<=m;i++){        if(!d[i]&&map[a][i]){            d[i]=1;            if(!s[i]||find(s[i])){                s[i]=a;                return true;            }        }    }    return false;}int main(){    int t,a,b,i,ans;    while(cin>>t&&t){        ans=0;        memset(map,0,sizeof(map));        memset(s,0,sizeof(s));        cin>>n>>m;        while(t--){            cin>>a>>b;            map[a][b]=true;        }        for(i=1;i<=n;i++){            memset(d,0,sizeof(d));            if(find(i))                ans++;        }        cout<<ans<<endl;    }    return 0;}
0 0
原创粉丝点击