【莫比乌斯反演】[HYSBZ\BZOJ2154]Crash的数字表格

来源:互联网 发布:mldonkey centos 编辑:程序博客网 时间:2024/06/05 11:18

题目
题目大意就是求ni=1mj=1lcm(i,j).
分析:

ans=i=1nj=1mlcm(i,j)=i=1nj=1mijgcd(i,j)

枚举d=gcd(i,j),
f(n,m,k)=1<=i<=n1<=j<=mgcd(i,j)=kij

显然可以得到
ans=d=1min(n,,m)d2f(nd,md,1)d=d=1min(n,,m)df(nd,md,1)

即算出除以d后互质的对数,两个数都乘d的乘积就得到了两个数的乘积,在除以d就是他们的最小公倍数。
那怎么求f呢
sum(x,y)=1<=i<=x1<=j<=yij=x(x+1)2y(y+1)2

F(x,y,k)=1<=i<=x1<=j<=yk|gcd(i,j)ij=k2sum(nkmk)=k|df(i,j,d)

f(x,y,k)=k|dμ(dk)F(x,y,d)

所以
f(x,y,1)=k=1min(m,n)μ(k)F(x,y,k)=k=1min(x,y)μ(k)k2sum(xkyk)=k=1min(x,y)μ(k)k2xk(xk+1)2yk(yk+1)2

然后运用分块优化求出ans即可(可参考[HYSBZ/BZOJ2301]Problem b中的分块优化)

#include<cstdio>#include<algorithm>using namespace std;#define MAXN 10000000#define MOD 20101009#define Sum(x,y) (1ll*x*(x+1)/2%MOD*(1ll*y*(y+1)/2%MOD)%MOD)int mu[MAXN+10],p[MAXN+10],pcnt,sum[MAXN+10],n,m,ans;bool f[MAXN+10];void prepare(){    int i,j,t=min(n,m);    mu[1]=sum[1]=1;    for(i=2;i<=t;i++){        if(!f[i])            p[++pcnt]=i,mu[i]=-1;        for(j=1;p[j]*i<=t;j++){            f[i*p[j]]=1;            if(i%p[j]==0){                mu[i*p[j]]=0;                break;            }               mu[i*p[j]]=-mu[i];        }        sum[i]=(sum[i-1]+1ll*i*i*mu[i])%MOD;    }}void Read(int &x){    char c;    while(c=getchar(),~c)        if(c>='0'&&c<='9'){            x=c-'0';            while(c=getchar(),c>='0'&&c<='9')                x=x*10+c-'0';            ungetc(c,stdin);            return;        }}int calf(int n,int m){    int t=min(n,m),i,last,ret=0;    for(i=1;i<=t;i=last+1){        last=min(n/(n/i),m/(m/i));        ret=(ret+((sum[last]-sum[i-1])%MOD*Sum(n/i,m/i))%MOD+MOD)%MOD;    }    return ret;}void solve(){    int t=min(n,m),i,last;    for(i=1;i<=t;i=last+1){        last=min(n/(n/i),m/(m/i));        ans=(ans+1ll*(i+last)*(last-i+1)/2%MOD*calf(n/i,m/i))%MOD;    }}int main(){    Read(n),Read(m);    prepare();    solve();    printf("%d\n",ans);}
0 0
原创粉丝点击