尼姆博弈+威佐夫博奕

来源:互联网 发布:奥创世纪网络影视 编辑:程序博客网 时间:2024/04/28 15:22

尼姆博弈:

有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一下,(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情形。
计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号(+)表示这种运算,先看(1,2,3)的按位模2加的结果:
1 =二进制01
2 =二进制10
3 =二进制11 (+)
———————
0 =二进制00 (注意不进位)
对于奇异局势(0,n,n)也一样,结果也是0。
任何奇异局势(a,b,c)都有a(+)b(+)c =0。
注意到异或运算的交换律和结合律,及a(+)a=0,:
a(+)b(+)(a(+)b)=(a(+)a)(+)(b(+)b)=0(+)0=0。
所以从一个非奇异局势向一个奇异局势转换的方式可以是:
1)使 a = c(+)b
2)使 b = a(+)c
3)使 c = a(+)b

例子:
例1。(14,21,39),14(+)21=27,39-27=12,所以从39中拿走12个物体即可达到奇异局势(14,21,27)。
例2。(55,81,121),55(+)81=102,121-102=19,所以从121中拿走19个物品就形成了奇异局势(55,81,102)。
例3。(29,45,58),29(+)45=48,58-48=10,从58中拿走10个,变为(29,45,48)。
例4。我们来实际进行一盘比赛看看:
甲:(7,8,9)->(1,8,9)奇异局势
乙:(1,8,9)->(1,8,4)
甲:(1,8,4)->(1,5,4)奇异局势
乙:(1,5,4)->(1,4,4)
甲:(1,4,4)->(0,4,4)奇异局势
乙:(0,4,4)->(0,4,2)
甲:(0.4,2)->(0,2,2)奇异局势
乙:(0,2,2)->(0,2,1)
甲:(0,2,1)->(0,1,1)奇异局势
乙:(0,1,1)->(0,1,0)
甲:(0,1,0)->(0,0,0)奇异局势

甲胜。

威佐夫博弈(Wythoff Game):

有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,...,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。
可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k。
奇异局势有如下性质:
1。任何自然数都包含在一个且仅有一个奇异局势中。
由于ak是未在前面出现过的最小自然数,所以有a[k] > a[k-1] ,而 bk= a[k] + k > a[k-1] + k > a[k-1] + k - 1 = b[k-1] > a[k-1] 。所以性质1成立。
2。任意操作都可将奇异局势变为非奇异局势。
事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。
3。采用适当的方法,可以将非奇异局势变为奇异局势。
假设面对的局势是(a,b),若 b = a,则同时从两堆中取走 a 个物体,就变为了奇异局势(0,0);如果a = ak ,b > bk 那么,取走b - bk个物体,即变为奇异局势;如果 a = ak , b < bk 则同时从两堆中拿走a-a[b-a] 个物体变为奇异局势( a[b-a], b-a+a[b-a]);如果a > ak ,b= ak + k 则从第一堆中拿走多余的数量a - ak 即可;如果a < ak ,b= ak + k,分两种情况,第一种,a=aj (j < k)从第二堆里面拿走 b - bj 即可;第二种,a=bj (j < k)从第二堆里面拿走 b - aj 即可。


结论:
两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。
那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:
ak =[k(1+√5)/2],bk= ak + k (k=0,1,2,...n 方括号表示取整函数)
奇妙的是其中出现了黄金分割数(1+√5)/2 = 1.618...因此,由ak,bk组成的矩形近似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[j(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,b = aj + j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异局势。

1 0
原创粉丝点击